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SUMMARY

“Dynamics matching” is a design concept in sensory-
motor fusion systems, where the performance is maximized
by adjustment of the dynamics of the system under the
physical and computational constraints. This paper models
dynamics matching as an optimization problem and con-
structs an adaptive acquisition algorithm. A numerical ex-
periment on the target-tracking task using active vision is
presented as an example, and it is shown that a reasonable
solution is acquired by the proposed approach. © 2006
Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 89(7):
19–30, 2006; Published online in Wiley InterScience
(www.interscience.wiley. com). DOI 10.1002/ecjc.20255
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1. Introduction

There has recently been remarkable progress in ele-
ment technology for robotics. With the development of
sensors and actuators with high-speed operation, it is ex-
pected that tasks can be performed at ultrahigh speed [1–3].

When the operating speed of the system is improved, on the
other hand, the effects of the temporal characteristics (dy-
namics) of various elements can no longer be ignored. In
particular, the physical dynamics of the actuator and sensor
performances, and the computational dynamics of the com-
putation resources and the algorithm, greatly affect the
system performance.

In the control of servomotors, for example, a control
rate of at least 1 kHz is generally considered necessary [4].
When sensor information is used in the control of the
actuator, there must be a sensor with a corresponding sam-
pling frequency. Conversely, even if high-speed sensors are
introduced, their speed is not fully taken advantage of if the
actuator is slow. Furthermore, the system performance de-
pends greatly on the algorithm and the information proc-
essing strategy of the processing system.

Thus, in order to integrate the sensing, processing,
and motor systems of a robot consistently and to achieve
maximum performance as a sensory-motor fusion system
[5], it is not sufficient to consider only speed improvement
of the individual elements: the matching of their dynamical
properties should also be considered.

Consequently, Namiki and colleagues proposed the
concept of dynamics matching, as a unified framework for
the physical and computational dynamics [5, 6]. The con-
cept is that the dynamics of the sensing, processing, and
motor systems of the whole system should be adjusted
subject to the physical and computational constraints and
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matched to the dynamics of the task and the outer world, so
that the performance is maximized according to the situ-
ation.

Consider, as an example, the situation in which a
robot does not have sufficient physical performance in the
sense of sensor accuracy or actuator output, and this defi-
ciency is to be compensated by prediction or estimation.
Real-time computation has certain limits, however, due to
the operating speed of the processor and the capacity of the
memory device. Thus, a problem arises due to the following
two contradictory requirements.

(1) The computational complexity must be increased
in order to compensate for deficiencies of physical perform-
ance.

(2) The computational complexity must be reduced
in order to maintain real-time operation.

Under the trade-off caused by these two conditions, the
information processing strategy and the computational
complexity must be controlled dynamically. Dynamics
matching is the process of solving such problems by con-
trolling the physical and computational dynamics of the
system.

Past studies have not taken a sufficiently unified
approach to the physical and computational dynamics, and
the solution of the problem has depended on the experience
and the intuition of the engineer at the site. In robotics, the
physical dynamics of the robot has long been considered in
trajectory planning and other problems [7–9], but there has
been little explicit discussion of computational resources or
computation load. Consequently, the potential capabilities
of the hardware and software of robots has not been fully
utilized.

In contrast, in the fields of artificial intelligence and
management engineering, there have been studies of esti-
mation and the decision-making subject to the limits of
given computational resources [10, 11]. In the fields of
parallel processing and hard real-time scheduling, resource
allocation is a major issue [12, 13]. However, most of these
studies do not consider physical dynamics and are not
suitable for application to robot systems in the real world.
The concept of dynamics matching is one attempt to find a
solution of the above problem in system design.

Two levels should be considered in the realization of
dynamics matching. One is realization at the stage of sys-
tem design [5, 6]. However, it is in general difficult to
acquire the a priori properties of the elements. Neither is it
easy to adapt to variations of the properties. The other is to
adjust the dynamics matching state adaptively and on-line
to changes of situation. This can be achieved by applying
an exploratory technique, even if the properties are not
known a priori.

This paper considers the latter problem of adaptive
dynamics matching as an optimization problem, and pro-
poses an adaptive acquisition algorithm. Using the target-
tracking task as an example, the algorithm is implemented
in a numerical experiment.

2. Algorithm for Adaptive Acquisition of
Dynamics Matching

2.1. Formulation of problem

First, consider dynamics of various properties of the
whole system, which is composed of the robot system,
tasks, and the whole outer world. The properties include
physical ones (such as the maximum torque of the motor,
the range of motion, the dynamic range of the sensors, and
the sensitivity of the sensors), and computational ones (such
as computational resources, algorithms, and the decision-
making process).

The dynamics of these properties are divided into
ones that cannot be adjusted directly by the system and ones
that can be adjusted directly. Below, the former are called
the constrained dynamics c and the latter are called the
adjustable dynamics a. The system performance is denoted
as P. Then, the dynamics matching problem can be consid-
ered as the problem of finding the optimal adjustable dy-
namics a that maximizes the performance P under the given
constrained dynamics c.

Figure 1 illustrates the above optimization problem.
The bottom surface in the figure is the space spanned by the
vectors whose components are the system properties. Its
axes consist of the constrained dynamics c and the adjust-

Fig. 1. A model of the dynamics matching problem.
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able dynamics a (it is assumed, for simplicity, that there is
no interaction among them). The vertical axis is the distri-
bution of the performance P (a, c), which is generally
unknown to the system. When a constrained dynamics c′ is
given, it implies that the space is cut by a fixed hyperplane
c = c′. The subspace obtained as the cross section represents
the performance distribution P (a|c′) under the constrained
dynamics c′. The purpose of the proposed method is to vary
the adjustable dynamics a in this subspace so as to find a*

that maximizes the performance P, that is, 

This optimization problem is composed of the following
two steps.

(1) P (a|c′), which is unknown, is to be estimated
adaptively.

(2) a that maximizes P (a|c′) is to be found.

It is difficult to perform these two steps at the same
time by an analytical method, and an exploratory approach
is required. Furthermore, modeling of the system is almost
impossible in many cases because of the ever-changing
dynamics. It is desirable to derive the solution on-line while
operating the real machine. Thus, parallel search is almost
impossible, and it is required to examine the system behav-
ior separately for each value of the adjustable dynamics.

In order to deal with such a requirement, in this study
we attempt to perform a search by reinforcement learning,
which has an affinity to robotics, being a trial-and-error
approach based on interaction with the real world. Rein-
forcement learning has been applied successfully to the
solution of large-scale and complex problems, such as
dynamic channel allocation for cellular telephones [14] and
parameter adjustment in fuzzy control [15]. In the next
section, dynamics matching is formulated in terms of rein-
forcement learning, and a solution algorithm is proposed.

2.2. Acquisition algorithm based on
reinforcement learning

Reinforcement learning is a trial-and-error learning
procedure intended to maximize the reward that can be
obtained from the environment [16]. The procedure differs
greatly from supervised learning in that learning progresses
even if the goal pattern to be acquired is not explicitly
presented.

The subject of reinforcement learning is called the
agent. The agent observes the “state” of the environment
and performs an “action” in accordance with a certain
“policy.” The environment makes a state transition accord-
ing to the action and gives a “reward” to the agent, which

represents the goodness or badness of the action. Learning
proceeds so that the “value function,” which is the expec-
tation of the reward, is maximized.

In order to maximize the expectation of the reward,
the reward must be predicted. The agent estimates the value
function by interaction with the environment and evaluates
the state and the action in order to predict the reward. The
agent determines the policy on the basis of the value func-
tion, and selects the action.

Reinforcement learning with such a feature is applied
below to dynamics matching acquisition, as shown in Fig.
2. Consider first the cross section P (a|c′) obtained by the
cut made by a hyperplane c = c′. The bottom face of the
hyper-cross section is a (dim a)-dimensional space with the
adjustable dynamics a as its element (for simplicity, Fig. 2
is drawn for the one-dimensional case). This space is de-
noted as P.

In the proposed algorithm, the point a (adjustable
dynamics) in space P is considered as the “state” in the
reinforcement learning, and the movement Da in space P
is considered as the “action.” A certain value which can
serve as an index of real-time performance is considered as
the “reward.” Then, the distribution of the value function V
(a, Da) comes to reflect strongly the performance P (a|c′)
with the progress of learning.

Then, the purpose of the algorithm is to move around
in the state space by trial and error, adjusting the adjustable
dynamics, and to find the state that maximizes the perform-
ance of the whole task.

It is assumed below, for simplicity, that the state space
P is a discrete space. However, the theory can also be
extended to a continuous space. In addition, in this study,
the search in the parameter space is considered as an anal-
ogy to the gridworld problem [16], and the action is defined
as an incrementation of the adjustable dynamics. However,
the definition of the action is not the essential aspect of

Fig. 2. Application of reinforcement learning to the
dynamics matching problem.
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dynamics matching. Consequently, the definition is arbi-
trary, and can be varied according to the problem.

Based on the above assumptions, the acquisition al-
gorithm is proposed as follows.

(1) The adjustable dynamics a currently selected by
the subject is recognized (state observation).

(2) The value function V (a, Da) is examined, and the
change Da of the adjustable dynamics a is determined
(action selection).

(3) Based on the change Da determined in step (2),
the adjustable dynamics a changes (state transition).

(4) The new adjustable dynamics a′ is recognized
(observation of state after transition).

(5) A task is performed under the new adjustable
dynamics, and a reward is acquired (reward acquisition).

(6) Based on the goodness or badness of the reward,
the value function V is evaluated and updated (update of
value function)

(7) Return to step (1).

3. Target-Tracking Task

To investigate the usefulness of the above acquisition
algorithm for dynamics matching, this section considers a
target-tracking task using active vision as an example. In
the system design it is not easy to achieve a balance between
specificity and generality; the general discussion would
become difficult in a sample problem based on a real
machine, being affected by problems inherent to the real
machine. In this paper, a simplified virtual system is con-
sidered as an example, and the method is evaluated from a
general viewpoint.

3.1. Active vision and dynamics matching

Active vision is a vision system equipped with a
device to move itself. In recent years, visual recognition has
been considered more important in various problems, and
better processing performance is required in active vision.
In order to deal with the requirement, performance has been
partially improved by hardware, such as speed-up of visual
information processing [17]. Still, due to a large number of
constraints, such as the speed and torque of the actuator, or
the resolution and the size of the sensor, it is difficult to
improve the performance by a simple algorithm. On the
other hand, there is a severe constraint on the number of
instruction steps in the embedded algorithm and the infor-
mation processing strategy from the viewpoint of the real-
time operation [18]. Thus, there arises the problem of
matching the information processing dynamics to the hard-
ware constraints and the real-time constraints.

This section discusses the problem in terms of the
target-tracking task using active vision. The target-tracking
task is the task of tracking a moving target using active
vision. Figure 3 outlines the task. In order to simplify the
discussion of the usefulness of the proposed method, a
simplified virtual system is assumed. For simplicity, a point
moving on a two-dimensional plane is defined as the target,
and the camera is assumed to move on a two-dimensional
plane which is parallel to the above. Time delay and obser-
vational error are ignored.

The system constructs an internal model of the target
motion based on the observed information, and predicts the
target trajectory up to several steps ahead. The trajectory is
planned on the basis of prediction so that the hardware
constraints are compensated, and the motion is actually
performed. This processing series of “observation → model
update → prediction → trajectory planning → motion” is
iterated at a constant time interval.

3.2. Dynamics matching in target-tracking
task

This section considers dynamics matching in the
above task. The constrained dynamics c considered in Sec-
tion 2.1 consists of the motion dynamics of the target, the
limits of the camera and motor performance, and the com-
putational load of the information processing. The adjust-
able dynamics a is the control of the information processing
strategy.

In this investigation the constrained dynamics c, the
adjustable dynamics a, and the performance P are defined
as in Table 1. The number of look-ahead steps k is selected
as the adjustable dynamics a, which indicates how many
steps ahead the motion should be predicted. It is an index
expressing the computational complexity needed for pre-
diction, and controls the strategy of how the computational

Fig. 3. Outline of a target-tracking task.

22



complexity should be allocated between the target trajec-
tory prediction and the camera trajectory planning.

In target trajectory prediction, if the look-ahead ex-
tends to the far future, the result can be utilized in the
trajectory planning, so that severe constraints can be com-
pensated. Thus, it is to be expected that the danger of losing
the target will be decreased and the performance of the
whole system will be assured. When k is increased to predict
the far future, however, the processing time Tp will be
increased. Moreover, in camera trajectory planning, when
we wish to improve the accuracy of the trajectory, a longer
time Tt will generally be required for iterative calculation
and other processes. In order to maintain real-time opera-
tion, on the other hand, the processing time Tp + Tt that can
be spent in all processing is limited. If too much computa-
tional complexity is allocated to the target prediction, aim-
ing at performance improvement, the time that can be
allocated to trajectory planning is decreased. Then, as a
result, the accuracy of the trajectory will be degraded and
the target may be lost.

Thus, as shown in Fig. 4, there is a trade-off relation
due to the contradiction between the increase in the amount
of processing and the conservation of real-time operation.
This trade-off situation is not known beforehand, and
changes depending on the value of the constrained dynam-
ics. Thus, it is necessary to control dynamically the balance
of the computational complexity to be allocated to target
prediction and trajectory planning. This compromise is
implemented in this study by the control of the number of
look-ahead steps k.

Thus, the problem reduces to the determination of the
number of look-ahead steps k that minimizes the mean-
square target prediction error under the constrained dynam-
ics c, that is, the determination of k* such that

The system has no supervisor to suggest the optimal
number of look-ahead steps k. Consequently, solution
search by trial and error using reinforcement learning will
be effective. In particular, in the on-line search for k, k must
be varied in each trial and the target prediction error must
be actually determined. In the next section, the algorithm
proposed in Section 2.2 is applied to the above problem.

In order to improve performance in a real system, it
will be necessary to consider more than one adjustable
dynamical parameter at the same time, not a single parame-
ter as in this study. However, since the method proposed in
this paper uses reinforcement learning, the same algorithm
can be used even if there are multiple parameters. For
simplicity and for clear evaluation of the effectiveness of
the algorithm, it is assumed that k is the only adjustable
dynamics in the experiment. The case of multiple parame-
ters is considered in Section 3.7.

3.3. Proposed parameter

Using the parameter proposed in Section 2.2, the
formulation in the previous section is rewritten in the frame-
work of reinforcement learning as in Table 2. This problem
is equivalent to the search problem in a one-dimensional
gridworld, where the numbers of look-ahead steps are
arranged as a discrete array.

As the value function construction algorithm, we use
Q-learning [16], which is a typical form of TD learning. The
value function Q in Q-learning has the constrained dynam-
ics c as the parameter. The update rule is expressed as
follows:

Fig. 4. Trade-off between the target position prediction
and the camera trajectory planning.

(1)

Table 1. Correspondence between the target-tracking
task and dynamics matching problem

Constrained 
dynamics c 

Target dynamics c

Width of camera view field d (mm)

Maximum speed v of camera
(mm/step)

Upper limit of computation time 
T = Tp + Tt  (≤ 1) (step)

Adjustable 
dynamics a 

Number of look-ahead steps k

Performance P  Inverse of mean-square target
prediction error 1/avg (|x|(t) – xp(t)|

2)
(mm–2)

(2)
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In the derivation of the action selection probability Pr (a),
the softmax method [16]

is used. Figure 5 shows the block diagram of the algorithm.

3.4. Experimental formulation

Based on the above algorithm, a numerical experi-
ment was performed for the target-tracking task. The ex-
periment was set up as follows.

3.4.1. Constrained dynamics

As the movement of target c, three different ellipses
with major axes from 200 mm to 400 mm and with the

minor axis constant at 100 mm, together with Brownian
motion based on a pseudo-random number, were used. As
regards the camera hardware, the edge of the view field, d,
was varied over six values from 250 mm to 500 mm. The
maximum speed of movement, v, was set to nine values
from 100 mm/step to 300 mm/step. These constrained
dynamics variables were switched at random for each trial.
The constrained dynamics T for the processing time was set
constant, with a value of 1, in this study.

3.4.2. Adjustable dynamics

It was assumed that the number of look-ahead steps
k had one of four values, 0, 1, 2, and 3. k = 0 implies that
prediction was not applied, and the present position of the
target was defined as the goal. In this case, the tracking error
was regarded as the target prediction error.

3.4.3. Target prediction

In order to track the target by feedforward control, it
is necessary first to construct an internal model of the target
motion x(t). It was assumed that an internal model for each
kind of target c was retained individually, and that the
two-dimensional position x(t) of the target was represented
as x(t + 1) = Ax(t) + B, using the two-dimensional state-
space representation {A, B} for each kind. It was assumed
that the internal model itself was not clearly known at the
start of learning (white noise was superimposed on the true
value). The estimate was successively updated in parallel to
the tracking, using the method of steepest descent based on
the prediction error. The prediction xp(t + 1) was calculated
from this model. When the number of look-ahead steps was
k, xp(t + k) was determined by iteratively applying the
procedure.

3.4.4. Trajectory planning

Since the speed of movement of the camera is limited,
it may happen that tracking along the predicted target
trajectory cannot be performed. Consequently, the camera
trajectory should be planned carefully. Optimal control is
generally used in trajectory planning for robots, where
approximate calculations are iterated since the system is
nonlinear. The following trajectory planning algorithm is
an abstraction of the iterative approximate calculation used
in conventional methods.

In trajectory planning in this experiment, accuracy of
the camera trajectory was successively improved, as shown
in Fig. 6. The initial setting of the camera trajectory was
defined as the straight line trajectory X(t + i) (i = 1, . . . , k)
toward the point xp(t + k). Within the range of the maximum
speed of movement v, this straight-line trajectory was itera-
tively modified to approach the target trajectory, using the
method of steepest descent:

Table 2. Description of variables in reinforcement
learning

State st Number of look-ahead steps k used by
the system at time t

Action a  Increment number of look-ahead steps k
by 1

Decrement number of look-ahead steps
k by 1

Maintain number of look-ahead steps k

Reward rt  100 ×  inverse of (mean-square
prediction error in N steps + 1) 

(3)

Fig. 5. Structure of the proposed algorithm.
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Here µ is a positive constant, and should be small in order
to assure stability.

Based on the concept of dynamics matching, the
computation time for the target prediction and the trajectory
planning should be explicitly considered. The processing
time was limited to a constant T. Consequently, when the
look-ahead k is increased, the processing time for target
prediction increases, and the time that can be allocated to
trajectory planning decreases. For simplicity, this constraint
was implemented by defining the penalty that the number
of iterative calculations n for trajectory planning was de-
creased by nk (where n is some positive constant), that is,
in proportion to k.

When the target was lost en route, the operation
shifted to the search mode and the target was sought by
moving the camera at random with a constant speed. In the
process, target prediction and trajectory planning were not
applied. When the target was captured in the view field, the
operation escaped from the search mode and tracking was
restarted.

3.4.5. Learning parameters

Various parameters such as those in Q-learning were
set as follows: α = 0.01, β = 0.05 × (experienced number of
episodes), γ  = 0.999, µ = 0.1, n = 9, n = 2, N = 30.

3.5. Experimental results

3.5.1. Relation between severity of constraints
and number of look-ahead steps

Figure 7(a) shows the distribution of the look-ahead
steps averaged in the last 2000 episodes, when the view

angle d and the maximum speed v were varied inde-
pendently. The darkness of each block represents the num-
ber of look-ahead steps for each constrained dynamic.
Similarly, Fig. 7(b) is the average number of look-ahead
steps when target trajectory c is varied (the horizontal axis
in the upper chart represents the major axis of the ellipse).

It is evident from Fig. 7 that the number of look-ahead
steps tended to increase when the constraints were severe
(i.e., the view field was narrow, the maximum speed of
movement of the camera was low, and the target speed was
high). This can be interpreted as follows.

When constraints are not severe, the risk that the
target will be lost at the next instant is minimized so long
as the target is set at the center of the view field. This can
be achieved in this trajectory planning framework only by
setting a single look-ahead step in target prediction and
trajectory planning. If further target prediction and trajec-
tory planning were performed, there would be a danger that
the performance might be degraded due to the computa-
tional load penalty. It is considered that the system “found”
such a situation by trial and error by reinforcement learning,
and reduced the number of look-ahead steps to a low value.

When the constraints are severe, on the other hand,
the target may easily be lost if such a strategy is used. Then,
the system took the strategy of compensating the con-

Fig. 6. Camera trajectory planning.

Fig. 7. Distribution map of averages of obtained
look-ahead steps: (a) under sensory-motor constraints,

(b) under external constraints.
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straints by increasing the look-ahead steps in target predic-
tion and trajectory planning, and assuring performance up
to several instants ahead, even though the computational
load would be increased. When the target showed Brownian
motion, the system “found” that look-ahead had no signifi-
cance and reduced the number of look-ahead steps.

In Fig. 7, the distribution of the obtained look-ahead
steps is not necessarily uniform. The reason may be that the
performance was affected by slight changes of the parame-
ters in such a severe environment as in this experiment. The
improvement of this aspect is left for future study.

3.5.2. Convergence of number of look-ahead
steps

Figure 8 shows the change of the state (number of
look-ahead steps) at each of the points A, B, C, and D in
Fig. 7. It is evident that the number of look-ahead steps
converged to a constant at each point. At point D, a longer
time was required for convergence than at the other three
points. In addition, the value itself was unstable. The reason
seems to be that the target motion differed each time, and
the optimal number of look-ahead steps would vary be-
tween 0 and 1.

3.5.3. Performance improvement

Figure 9 compares the behavior of the value function
Q for the case in which k was adaptively varied (proposed
method) and for the cases in which k was fixed as 0, 1, 2,
or 3 (only the action of retaining each value of k was
performed). We set d = 450 mm, v = 150 mm/step. For the
proposed method, the value function for the action to retain
k = 2 is shown. It is evidently optimal to set k = 2. In the
proposed method, the system “found” that it is optimal, and
finally succeeded in converging to the value function with
k = 2 fixed. Since the value function greatly reflects the
performance, it is concluded that the proposed method was
useful in acquiring a high-performance information proc-
essing strategy.

Figure 10 shows the behavior of the root-mean-
square prediction error at point B in Fig. 7. It can be seen

that the error decreased (although there seems to be an
upper bound, due to the properties of the numerical experi-
ment; such trials correspond to the situation in which the
target was lost in the early stage and a time-out occurred).
It is also verified that the error decreased similarly for the
other points. Thus, it is concluded that the proposed method
actually improved the performance.

3.5.4. Difference of information processing
strategy observed in behavior

The difference of the information processing strategy
was also reflected in the macroscopic behavior. Figure 11
shows typical cases of tracking that occurred in the case of
severe physical constraints (d = 300 mm, v = 250 mm) and
in the case of nonsevere constraints (d = 300 mm, v = 400
mm). When the constraints were not severe, the number of
look-ahead steps was set as 1 and the target was captured
at the center of the view field. Thus, tracking almost exactly
along the target trajectory was achieved. When the con-
straints were severe, on the other hand, a reasonable strat-
egy was acquired as follows. The number of look-ahead
steps was set as 2, so that the periphery of the screen was
effectively utilized and the target was tracked without mov-
ing the camera much. This is a tracking strategy suited to
active vision, when the actuator is severely constrained.

3.6. Adaptability to environmental variations

In order to investigate the usefulness of the adaptive
method by on-line learning, an experiment was performed
in a varying environment. Specifically, the target trajectory,
which is one of the constrained dynamics, was changed
suddenly in the experiment, and it was examined whether
or not the system could switch to the optimal number of
look-ahead steps. It was assumed that the system can detect
the change of the target trajectory (the detection procedure
is not discussed in this paper, but various methods have been
proposed [19–24]), and reset the inverse temperature pa-
rameter β in the softmax method to the initial value (it
should be noted that the procedure aims to restore the

Fig. 8. Changes in look-ahead steps (average values per 20 episodes).
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learning ability, which has degraded exponentially with
time, and not to restore the result of learning). In the
proposed method, the content of the previous learning was
overwritten by the new content. It may technically be
possible to retain the previous content, but this topic is not
discussed in this paper.

Figure 12 shows the change in the number of look-
ahead steps, in the case that the major axis of the elliptic
target trajectory was changed from 350 mm to 250 mm,
after 5000 episodes elapsed. It can be seen that the number
of look-ahead steps was 3 before the change of the trajec-
tory, but was switched to 2 after the change. Considering
that the constraint was severer before the trajectory change,
we see that the system achieved dynamics matching accord-
ing to the varying environment.

Fig. 9. Comparison of performance with adaptive k
(proposed method) and fixed ks.

Fig. 10. An example of changes in root mean square
prediction error.

Fig. 11. Behavior of tracking. Upper: under loose
constraints (1-step look-ahead); lower: under severe

constraints (2-step look-ahead).

Fig. 12. Changes in look-ahead steps according to the
shift in the target trajectory. 
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3.7. Applicability to more complex problems

The experiment up to this stage has been set equiva-
lent to the one-dimensional gridworld problem in order to
demonstrate clearly the effectiveness of the algorithm.
However, the dynamics matching problem in a real system
is often of higher dimension and more complex. The algo-
rithm presented in this paper is directly applicable, in
principle, to higher-dimensional problems. It should be
noted, however, that the learning time tends to increase with
the dimension. Below, the applicability to more complex
problems is discussed from the viewpoint of the learning
time.

The learning process includes a large number of
stochastic elements, and strict evaluation of the learning
time is essentially impossible. However, it is possible to
provide a rough estimate of the learning time. Whitehead
has shown that the learning time in Q-learning increases
exponentially with the size of the state space [25].

The elements which have been considered in the
experiment up to the previous section are two: the process-
ing time Tp for prediction of the target trajectory, and the
processing time Tt for camera trajectory planning. A further
element is added, namely, the processing time Ts in super-
vised learning of the internal model of the target. Thus, the
task consisting of three elements is considered. Specifically,
it is as follows.

The number of iterations of the method of steepest
descent for acquiring the internal model of the target was
defined as another adjustable dynamics k′, and a penalty
was defined in which the number of iterations in the trajec-
tory planning was reduced according to the value of k′. The
problem then is equivalent to the two-dimensional grid-
world problem with k and k′ as the parameters. The value
function is four-dimensional, being increased by two. In the
experiment, the number of iterations k′ of the method of
steepest descent was set to two values, 1 and 15, or to four
values, 1, 5, 10, and 15. Other parameters were fixed as v =
150 mm/step, d = 450 mm, c = 300 mm. The learning was
judged to be completed when the selected k and k′ both
remained constant for 200 episodes.

Table 3 shows the number of episodes until learning
was completed (the average over 10 trials). It is verified that
the learning time actually increased when the problem
became more complex. When the number of elements in
the value function was large, being 144, there existed a few
cases in which learning did not converge even if 20,000
episodes were performed (these cases were excluded from
the statistics in Table 3). When the number of elements was
72, a strategy in which the priority was given to tracking
rather than model learning was clearly acquired. When the
number of elements was 144, however, there was no clear
pattern in the acquired strategy, suggesting the presence of
a complicated trade-off relation among the three.

In general, the real machine does not have so many
degrees of freedom and adjustable dynamics. Conse-
quently, it is expected that cases where solution is impossi-
ble will not arise very often. When the number of degrees
of freedom is high, however, the learning time will increase
explosively, limiting the application of the proposed
method. Consequently, in real design it will be necessary to
estimate the learning time and to determine the number of
degrees of freedom to be acquired. To reduce the learning
time, it will be effective to utilize various high-speed algo-
rithms [25, 26].

Furthermore, a larger amount of resources must be
allocated to the value function itself when the dimension is
increased. However, this will not be a serious problem in
dynamics matching, considering recent advances in large-
capacity memory. A unified discussion of the resources to
be allocated to the value function is difficult, since it de-
pends greatly on the task. However, many techniques have
been proposed to reduce the resources used for the value
function by compression and feature parameter repre-
sentation [27, 28], and it will be effective to apply these
techniques whenever necessary.

It is also noted that, while the inverse of the mean-
square prediction error was used as the performance meas-
ure in the experimental results presented in this paper, the
results were almost identical when the inverse of the mean-
square tracking error was used.

These results clearly show that the proposed method
is useful. It is indispensable to achieve dynamics matching
in order to improve the speed of sensory-motor fusion
systems such as robots. The trade-off relation as verified in
this paper is essential and independent of tasks. Conse-
quently, the proposed method will be a versatile and effec-
tive means of solving the problem.

4. Conclusions

This paper has modeled dynamics matching as an
optimization problem, and has constructed an adaptive

Table 3. The number of episodes spent for learning

Number of 
adjustable 
dynamics

Number of value 
function elements

Number of 
episodes

1 only k 4 × 3 = 12 1432

2 k and k′  (4 × 3) × (2 × 3) = 72 2616

2 k and k′  (4 × 3) × (4 × 3) = 144 4148

The expression “(4 × 3) × (2 × 3)” means that k has four
states and three actions, and k′ has two states and three
actions.
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acquisition algorithm based on reinforcement learning. The
method was applied to a target-tracking task using active
vision. It was shown that the proposed method is useful in
realizing dynamics matching by acquiring a reasonable
tracking strategy according to the situation.

Problems left for the future include improving the
convergence of the algorithm, and demonstrating the effec-
tiveness of the method by implementation in a real active
vision system [17].
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