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Abstract

This article proposes an adaptive action-selection method for a model-free reinforcement learning system, based on the concept of the

‘reliability of internal prediction/estimation’. This concept is realized using an internal variable, called the Reliability Index (RI), which

estimates the accuracy of the internal estimator. We define this index for a value function of a temporal difference learning system and

substitute it for the temperature parameter of the Boltzmann action-selection rule. Accordingly, the weight of exploratory actions adaptively

changes depending on the uncertainty of the prediction. We use this idea for tabular and weighted-sum type value functions. Moreover, we

use the RI to adjust the learning coefficient in addition to the temperature parameter, meaning that the reliability becomes a general basis for

meta-learning. Numerical experiments were performed to examine the behavior of the proposed method. The RI-based Q-learning system

demonstrated its features when the adaptive learning coefficient and large RI-discount rate (which indicate how the RI values of future states

are reflected in the RI value of the current state) were introduced. Statistical tests confirmed that the algorithm spent more time exploring in

the initial phase of learning, but accelerated learning from the midpoint of learning. It is also shown that the proposed method does not work

well with the actor-critic models. The limitations of the proposed method and its relationship to relevant research are discussed.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Internal prediction, or estimation of the future, is the

most essential step in deciding what actions an agent should

take in an environment, because it foretells the result of a

given action without taking the action. If the results of

actions can be accurately predicted, the agent can achieve

maximum performance by choosing the action that will

bring the best outcome (i.e. ‘greedy policy’).

However, this assumption is violated if the internal

prediction is incorrect. This situation is inevitably observed

in an on-line learning system, which builds an internal

predictor or estimator while working in an actual environ-

ment. The same holds true when the characteristics of

the environment vary over time. In these cases, we cannot

expect predictions to always be accurate; consequently,

action-selection that relies totally on internal prediction is

no longer effective. Instead, it may be meaningful to place

more weight on exploratory actions to acquire more

knowledge of the environment.

Therefore, an essential problem in an on-line reinforce-

ment learning system is how to balance greedy action-

selection, which utilizes internal prediction, and exploratory

action-selection to learn about the environment. This

problem is broadly known as the ‘exploration–exploitation

balance’, and it has long been discussed in fields involving

adaptive systems, from optimal control to machine learning

(Dayan & Sejnowski, 1996; Fe’ldbaum, 1965; Sutton, 1990;

Sutton & Barto, 1998; Thrun & Möller, 1992). Although an

optimal strategy can be derived in a theoretical manner for

some simple problems (Witten, 1976), no general practical

solution is applicable to larger problems, and various

heuristics have been proposed for given problems. This

article discusses a heuristic, but rather general, method,
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focusing on a temporal difference (TD) learning system,

based on the concept of ‘reliability’.

An essential question that has been discussed in the

literature on exploration–exploitation problems is that of

which state an agent prioritizes when exploring the state

space. Various ideas have been proposed for this

problem. For example, ‘exploration bonus’ (Dayan &

Sejnowski, 1996; Sutton, 1990) places additional weight

on states that the agent has not visited recently. In

‘prioritized sweeping’ (Moore & Atkeson, 1993), the

system puts the present state into the priority queue when

the change in the state transition probability exceeds a

given threshold. Including algorithms in the literature of

artificial intelligence (Brafman & Tennenholtz, 2000;

Kearn & Singh, 1998), most conventional studies have

been based on model-based learning systems, that is, the

systems included a state transition matrix and a reward

matrix. These studies proposed guidelines for exploration

that minimized the discrepancy between the actual

environment and its model. In other words, they

attempted to select the best states to visit in order to

detect errors in the model.

By contrast, our paper focuses on model-free

reinforcement learning systems, such as the TD learning

system (Sutton, 1988). In a model-free system, the

system does not construct an environmental model, but

learns value functions directly. Although the lack of an

explicit model ultimately has a number of limitations,

such systems are attractive nevertheless, because of their

simplicity.

The key to model-free systems is how to estimate value

functions correctly; consequently, the value function plays

an essential role in this paper. Another feature of our study is

that we aim to adjust the randomness of action selection (i.e.

the weight of exploration), instead of choosing states to

visit. To this end, we try to estimate the current reliability of

the value function, and to change the action-selection policy

according to its reliability.

The fundamental idea is to change the randomness of

action selection as learning progresses. In general, the

agent needs to explore the environment more when it

knows little about the characteristics of the environment;

once it has adapted to the environment sufficiently, it

can then draw on its knowledge. This implies that as

learning proceeds less weight should be placed on

exploratory actions. In fact, this idea has been discussed

in the literature on reinforcement learning. Before going

into our method in detail, let us examine the methods

that are typically used to balance exploration and

exploitation.

One is the epsilon-greedy method. In this method, an

agent chooses actions based on the greedy policy in most

trials, but sometimes takes exploratory actions, where the

ratio of exploratory actions is designated by the parameter 1:

Another method is the so-called Boltzmann action-selection

rule, where actions are chosen in a probabilistic manner

according to the probability

PðaÞ ¼
expðQðaÞ=TÞX

a0

expðQða0Þ=TÞ
; ð1Þ

where QðaÞ gives a value for action a; and T is a positive

constant called the ‘temperature parameter’. Using this rule,

the agent is more likely to choose actions with higher

Q-values. The temperature parameter adjusts the explora-

tion–exploitation balance; action-selection becomes more

random with larger T ; and is almost deterministic at the

limit T ! 0:

In most demonstrations of reinforcement learning, these

parameters are determined (by trial and error) so that the

agent performs in the manner desired. If we want to reduce

the weight of exploratory actions as learning proceeds, we

can reduce the parameter values according to the number of

learning steps taken. This operation, called ‘annealing’, is a

simple way to adjust the balance according to progress in

learning.

Although annealing is attractive because of its simplicity,

it has at least one significant problem, which is that the

schedule of annealing must be determined a priori. As

nobody can predict the speed of learning, annealing is likely

to be adversely affected when there is a mismatch of the

learning speed and the annealing schedule. Another crucial

deficit of annealing is that it cannot cope with a temporal

change in the environment: annealing is no longer mean-

ingful if the characteristics of the environment change in an

unexpected manner.

Nomenclature

a action

s state

PðaÞ probability of selecting action a

Qðs; aÞ action value function

VðsÞ state value function

RðsÞ;Rðs; aÞ reliability index

R1 lowest limit of reliability index

f ðsÞ feature vector

wðaÞ;wV ;wqðaÞ : weight vector

Rw reliability index for weight vector

d TD error

T temperature parameter

a;a0;a1;b;b0;b1;aR learning coefficient

g discount rate for reward

gR discount rate for reliability index

h parameter for action-selection
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Therefore, in order to change the action-selection policy

according to progress in learning, we have to estimate

the accuracy of the value function, and change the

randomness parameters (1 and T) adaptively according to

this estimation. This study proposes such a faithfully

adaptive action-selection method.

The essence of the proposed algorithm is the concept of

the ‘reliability of internal prediction/estimation’. Reliability

represents our ‘confidence’ with our own prediction or

knowledge. We originally applied this concept to explain

changes in human motor behavior during visuo-motor

adaptation (Sakaguchi, 1996; Sakaguchi, Akashi, &

Takano, 2001; Sakaguchi & Nakano, 1992). In those papers,

we illustrated how a computational model based on this

concept well simulated the hand movements of human

subjects adapting to visually distorted environments. The

present study generalizes and re-formulates this idea in

order to apply it to the TD learning system (Sakaguchi &

Takano, 2001), and examines how the resultant algorithm

behaves in comparison with conventional algorithms.

In order to implement the agent’s subjective measure of

the accuracy of predictions in a computational algorithm,

we define an internal variable, called the Reliability Index

(RI), which gives an expected value for the difference

between the actual result and that predicted. In this study,

we define this index for the value function of a TD learning

system. Concrete algorithms are given for two types of

value function: tabular-type functions, which give a value to

every pair of state and action, and weighted-sum-type

functions, which calculate a value that is a linear summation

of the features. In a separate paper (Sakaguchi & Takano,

under review), we discuss the method’s application to

modular learning.

Adaptive change in the temperature parameter can be

regarded as meta-learning (see Doya, 2002 for review), a

brain mechanism that is used to regulate the global

parameters (i.e. the action-selection randomness, learning

coefficient and discount rate) and structure of a learning

system. Since people adjust the weight placed on explora-

tion dynamically in daily life, it is plausible that adjusting

action-selection randomness is one of the essential functions

of the human brain. In addition to exploration weight, this

paper addresses the possibility of applying the RI to

automatically adjust another global parameter, the learning

coefficient. Moreover, other researchers have applied the

reliability concept to adjust the discount rate (Ogawa,

Namiki, & Ishikawa, 2002). Therefore, the reliability

concept provides automatic control of three global par-

ameters and is meaningful for explaining the mechanism of

meta-learning in the human brain.

The behavior of the proposed method is demonstrated

using numerical experiments. In the first experiment, we

examine the learning performance of the proposed algor-

ithm with problems of various size, and compare its

performance with those of typical conventional algorithms

(i.e. epsilon-greedy and the Boltzmann action-selection

rule). In the second experiment, we deal with the time-

variant grid-world problem to illustrate adaptation ability of

the proposed algorithm. The third experiment, which deals

with the ‘acrobot’ problem, examines the behavior of the

algorithm with weighted-sum-type value functions. Finally,

we discuss the limitations of the proposed method and its

relationship to relevant approaches.

2. Reliability of internal prediction/estimation

and its application to value function

This section explains the concept of ‘reliability’ and how

to apply this concept to a TD learning system.

As mentioned above, changing the exploration–exploi-

tation balance according to the accuracy of internal

prediction/estimation is a good strategy that an agent can

use to efficiently adapt to a new environment. The problems

are how to estimate its accuracy, and how to reflect this in

action-selection.

The accuracy of prediction is objectively determined by

the difference between a prediction and the outcome (this

difference will be referred to as the ‘predictive error’, below.

Note that in the TD learning system, this corresponds to the

TD error, because it represents the discrepancy between the

expected and actual reward sums). However, this infor-

mation is available only after performing an action. In order

to predict the accuracy of action selection, the agent must

keep an estimator of predictive error as an internal variable.

The concept of reliability is one possible internal

estimator. In simplest terms, the RI can be defined as an

internal variable that estimates the expected predictive

error; it is updated after every action by comparing itself to

the actual error. The RI decreases when the predicted error

is smaller than the RI, that is, when the prediction is more

accurate than expected, and increases when the opposite is

true. In a stationary environment, the RI is expected to

converge on a certain value that depends on the statistical

properties of the environment and the representation ability.

The RI changes continually in a time-varying environment

as the degree of predictive error varies over time.

Now, we consider defining the reliability of the value

function, i.e. an internal estimate of the ‘reward sum’. For

the state-value function VðsÞ; we simply define an index

RðsÞ: For the action-value function Qðs; aÞ; on the other

hand, we can think of two manners, action-based reliability

Rðs; aÞ and state-based reliability RðsÞ: The former is defined

separately for each pair of state and action (that is, one

Rðs; aÞ for each Qðs; aÞ) while the latter is defined commonly

for different actions. This point will be discussed later.

The predictive error of ‘reward sum’ is given by the

difference between the value function and the true reward

sum and, in a TD learning system, this information is

provided by TD error. Accordingly, the RI is updated by

comparing the TD error and the RI itself. The RI decreases

when the (absolute value of) TD error is smaller than
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the RI, and increases when the opposite is true. Using these

definitions, the RI is expected to become close to the

standard deviation of the TD error. If the environment is

stationary, this implies that the RI can be an estimator of the

standard deviation of the reward sum.

In this sense, the proposed method appears to be an

attempt to use the variance in a reinforcement learning

system. The combination of the mean and variance is a

natural expansion of typical reinforcement learning, which

uses only the expected reward sum, and other researchers

have discussed this (Sato, Mimura, & Kobayashi, 2001;

White, 1988; Williams, 1992).

However, our focus is not on estimation of the variance

parameter and its use, but on flexible change of the action-

selection policy for a time-variant environment, as will be

discussed in Section 5.1. (Note that Williams (1992)

suggested using the variance parameter of a Gaussian unit

to control the degree of exploration.) As we stated above,

the RI represents the self-confidence of the agent, and

depends on both the environment and the agent itself. Our

aim is to examine how this ‘psychologically-inspired’

algorithm works in some typical reinforcement learning

problems.

3. Algorithm

The proposed algorithm consists of three parts: (1)

adaptive action selection, (2) updating the value-function

and RI, and (3) adjusting the learning coefficient. The

following subsections explain each part.

3.1. Adaptive action selection

The core of the proposed method is to adjust the ratio of

exploratory actions according to the RI. To implement this

idea, we modified the Boltzmann rule by substituting the

RI for the temperature parameter ðTÞ: Accordingly, the

probability of selecting action a at state s is given by

Pða; sÞ ¼
expðhQðs; aÞ=RðsÞÞX

a0

expðhQðs; a0Þ=RðsÞÞ
; ð2Þ

where Qðs; aÞ is the value function for action a in state s;

RðsÞ is the RI defined for state s; and h is a positive

constant.

This rule is like the original Boltzmann rule, in that the

agent is more likely to select actions that give larger Q-

values. However, it definitely differs, in that the randomness

of action selection varies dynamically according to the RI.

The agent becomes more exploratory with larger R; and

more deterministic with smaller R: Unlike annealing, which

reduces the randomness uniformly, the proposed method

makes action selection more or less probabilistic according

to the amount of TD error. The agent’s behavior becomes

more deterministic as TD error decreases with learning.

Conversely, if TD error increases due to an environmental

change, the agent’s behavior becomes exploratory in order

to adapt to the new environment.

From another point of view, this method does not use the

genuine Q-value for action selection, but uses the Q-value

normalized by the RI (that is, the effect of the Q-value

changes according to the amount of RI). This in turn brings

subtle difference in the role of exploration parameters (i.e. T

and h); h is operated to the normalized dimensionless value

Qðs; aÞ=RðsÞ (because RðsÞ has the same dimension as the

reward and Q-value), whilst T is operated to the Q-value

itself. Thus, we can deal with the exploration parameter h

independent of the fluctuation of Q-values and of progress in

learning. Note that the exploration parameter h still has to

be appropriately selected (see Section 3.5 for a guideline for

this selection).

3.2. Definition of reliability index

Before going into the update rule of RI, we would like to

explain the detailed definition of the RI.

In Section 2, we mentioned that two types of RI (i.e.

state-based RI RðsÞ and action-based RI Rðs; aÞÞ can be

thought of for the action-value function Qðs; aÞ: Never-

theless, we adopted the state-based RI for the action

selection rule (Eq. (2)). First, we explain the reasons for

this. One is that action selection is performed with a state as

a unit; thus, the randomness of action selection should be

defined for a state, not for an action. The other reason is that

if the index were defined separately for different actions, the

index for a specific action might be very small compared to

those for other actions. If this happened, the agent would

always choose the specific action, because its normalized Q-

value would be much larger than that of the others.

Therefore, it is unreasonable to use action-based reliability

for action selection.

Next, we consider whether RðsÞ should be updated in

common for all actions, or defined as the average of Rðs; aÞ:

We discuss this problem in detail, separately for Q-learning

(Barto, Sutton, & Watkins, 1990; Watkins & Dayan, 1992),

which utilizes the action-value function Qðs; aÞ; and for the

actor-critic model (Barto, Sutton, & Anderson, 1983), which

uses the state-value function VðsÞ:

In Q-learning, TD error is defined by

TD error ¼ reward þ g maxa0 Qðs0; a0Þ2 Qðs; aÞ; ð3Þ

where s0 is the state after action a: Note that this TD error is a

function of s and a; meaning that it is calculated separately

for different actions.

At the beginning of learning, the agent chooses different

actions almost uniformly, and thus, TD error takes similar

values for different actions. As the learning of Q-value

proceeds, however, the agent comes to select specific

actions; TD error decreases only for such selected actions.

If we define Rðs; aÞ separately for different actions,

thus, Rðs; aÞ would decrease only for the optimal
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(and sub-optimal) actions ap: Since commonly-updated RðsÞ

presumably behaves like Rðs; apÞ after sufficient learning, it

is expected that commonly-updated RðsÞ takes a smaller

value than RðsÞ defined as an average of Rðs; aÞ: Accord-

ingly, the learning would be faster with the commonly-

updated RðsÞ; than with the average-based RðsÞ:

Based on this consideration, moreover, we can think of

another definition of RðsÞ; that is, RðsÞ ¼ Rðs; apÞ: This can

be implemented either by defining separate Rðs; aÞ and

substituting Rðs; apÞ for RðsÞ at every trial, or by updating a

common RðsÞ only when the agent chooses optimal action

ap: Because Rðs; apÞ is almost similar to (or smaller than) the

common RðsÞ; it is to be expected that learning would be the

same (or even accelerated) with this third method, compared

to with the common RI method.2

In summary, we should define the RI for a state as the

common RI for all actions, or as the RI for the optimal

action (i.e. Rðs; apÞ).

Now, we move on to the actor-critic model. In the actor-

critic model, TD error is defined by

TD error ¼ reward þ Vðs0Þ2 VðsÞ: ð4Þ

In this case, the TD error is not defined separately for

different actions. As a result, the TD error can change

drastically, dependent on action selection because the next

state ðs0Þ differs among different actions.

This is easily seen by comparing the following cases.

Assume that the agent chooses action a1; which leads to

s1; at state s0 for most cases. Then, the TD error will

converge on

TD error1 ¼ reward þ Vðs1Þ2 Vðs0Þ: ð5Þ

If the agent chooses action a2; which leads to s2; as an

exploratory action, then the TD error is

TD error2 ¼ reward þ Vðs2Þ2 Vðs0Þ: ð6Þ

Accordingly, the absolute TD error suddenly increases if

Vðs1Þ and Vðs2Þ are very different, and a common RðsÞ is

greatly affected by this sudden increase in the TD error.3 In

order to reduce such fluctuations caused by action selection,

we had better define separate Rðs; aÞ for different action and

calculate RðsÞ as an average of Rðs; aÞ; or as Rðs; apÞ:

As for the actor-critic model, therefore, it is advisable to

define the RI for a state as an average of Rðs; aÞ or as the RI

for the optimal action.4

3.3. Update rule of the value function

and its reliability index

Next, we explain the learning rule. The rules for updating

value functions are the same as in the ordinary TD learning

method. We will present the rules for tabular-type value

functions and weighted-sum-type functions separately.

3.3.1. Tabular-type value functions

In Q-learning, Q-values are updated by

DQðs; aÞ ¼ ad; ð7Þ

d ¼ r þ g maxa0 Qðs0; a0Þ2 Qðs; aÞ; ð8Þ

where a is a positive constant called the ‘learning

coefficient’, d is the TD error, g is a constant called the

‘discount rate’, and r is the reward/punishment. In the actor-

critic model, on the other hand, the value functions are

updated by

DVðsÞ ¼ ad; ð9Þ

Dqðs; aÞ ¼ bdð1 2 pðs; aÞÞ; ð10Þ

d ¼ r þ gVðs0Þ2 VðsÞ; ð11Þ

where a is a positive constant, and pðs; aÞ is the probability

of choosing action a in state s:

On the other hand, the RI is updated using the following

equations for Q-learning and the actor-critic model,

respectively

Q-learning ðcommon RðsÞÞ :

DR2ðsÞ ¼ aRðd
2 þ gRR2ðs0Þ2 R2ðsÞÞ;

ð12Þ

actor-critic model :

RðsÞ ¼ averageaRðs; aÞ;
ð13aÞ

DR2ðs; aÞ ¼ aRðd
2 þ gRR2ðs0Þ2 R2ðs; aÞÞ: ð13bÞ

Here, R2ðsÞ is the square of RðsÞ: aR is a positive constant

that determines the rate of modification of the RI.

gRð0 # gR # 1Þ gives the magnitude of how the RI of the

succeeding state affects the RI of the current state.

Therefore, this update rule means that RðsÞ increases or

decreases depend on whether the sum of the TD error (i.e.

the current error) and the RI of the succeeding state (i.e. the

uncertainty of future error) is larger or smaller than RðsÞ:

This is reasonable, because the reliability of a value function

for a given state should depend on how reliable the value

functions of the succeeding states are. In the special case

when the uncertainty of the future state becomes zero (i.e.

Rðs0Þ ¼ 0Þ; RðsÞ indicates the variability of the TD error.

Another special case is gR ¼ g2; for which Sato et al. (2001)

theoretically proved that R2ðsÞ converges on the variance of

the reward in a stationary environment. Below, we refer to

gR as the ‘RI discount rate,’ because this term shows how

the system discounts the uncertainty of a future state when

estimating the uncertainty of the current state.

2 We confirmed this by numerical experiments (data not shown).
3 Fluctuation of the common RðsÞ occurs also with Q-learning, but the

amount of fluctuation is much smaller, thanks to separate Qðs; aÞ for

different actions.
4 However, a result of numerical experiment showed that the learning

performance was not remarkably different among these three methods (data

not shown).
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The initial value of RðsÞ can be set arbitrarily as long as it

is not too large with respect to the order of the value

function. Actually, it had little effect on the result in the

numerical experiments. Rather, it is helpful to define the

minimum limit of the RI (denoted R1; below). This prevents

the RI from being zero, which is required for the calculation

in Eq. (2). In general, R1 should be sufficiently small with

respect to the order of the value function.

3.3.2. Weighted-sum-type value functions

Although tabular-type value functions are easy to

implement, in practice they cannot be applied to a complex

learning system with a large number of states or continuous

state variables. One of the common methods used for such

cases is to realize a value function as a linear sum of feature

values that represent the system states (Sutton & Barto,

1998). Concretely, an action value function and a state value

function are given by

Qðs; aÞ ¼ Q0ðf ðsÞ; aÞ ¼ wðaÞ·f ðsÞ; ð14aÞ

VðsÞ ¼ V 0ðf ðsÞÞ ¼ w·f ðsÞ; ð14bÞ

where f ðsÞ is a K-dimensional feature vector (s represents

the state), and wðaÞ or w is a weight vector.

In this case, the value function is updated using the

following rule. For an algorithm using an action value

function, such as Q-learning

DwðaÞ ¼ adf ðsÞ; ð15Þ

where a is a learning coefficient and d is the TD error

defined in Eq. (8). By contrast, for the actor-critic model

DwV ¼ adf ðsÞ; ð16Þ

DwqðaÞ ¼ adð1 2 pðs; aÞÞf ðsÞ; ð17Þ

where wV and wqðaÞ are the weight vectors for the critic and

actor, respectively, and d is the TD error defined in Eq. (11).

When the value function is given by Eq. (14a) or (14b),

the RI should be defined for a weight vector because the

agent tries to estimate the weight vector. Theoretically,

the RI for a weight vector should be given in a matrix, since

the RI originally corresponds to a covariance matrix for

random variables.5 However, here we explain a simpler

method, in which a RI is defined for each element of the

weight vector, without considering correlation between

different features. This is because a matrix-type RI requires

much more memory ðK £ KÞ:

Now, we describe a concrete definition of the RI ðRwÞ for

the weight vector ðwÞ and its update rule. First, we deal with

the case of Q-learning. In this case, the RI for a value

function is given by

R2ðs; aÞ ¼
X

k¼1;K

R2
wkðaÞf

2
k ðsÞ; ð18Þ

where RwkðaÞ and fkðsÞ are the kth components of RwðaÞ

and of f ðsÞ; respectively. Since the matrix-type RI was

given by

R2ðs; aÞ ¼
X

j;k¼1;K

R2
wjkfjðs; aÞfkðs; aÞ ¼ f TðsÞR2

wðaÞf ðsÞ: ð19Þ

(Rwjk is the ðj; kÞ element of Rw), we can see that the

simplified form in Eq. (18) ignores the cross-terms (i.e. the

non-diagonal elements in Rw) in Eq. (19). Note that R2ðs; aÞ

is averaged over a or R2ðs; apÞ is selected when it is used for

action selection.

Conversely, the update rule for RwkðaÞ (or RwðaÞ) is

given by

DR2
wkðaÞ ¼ aRðd

2 þ g2
RR2ðs0Þ2 R2ðs; aÞÞ

� ðR2
wkðaÞf

2
k ðsÞ=R

2ðs; aÞÞR2
wkðaÞ; ð20aÞ

¼ aR½ðd
2 þ g2

RR2ðs0ÞÞ=R2ðs; aÞ2 1�f 2
k ðsÞR

4
wkðaÞ:

ð20bÞ

Eq. (20a) means that the error in the total RI ðd2 þ

g2
RR2ðs0Þ2 R2ðs; aÞÞ is delivered to the RI of each feature

component with a weight of R2
wkðaÞf

2
k ðsÞ=R

2ðs; aÞ: (Note

that R2ðs; aÞ is given by the sum of R2
wkðaÞf

2
k ðsÞ; as in

Eq. (18).) The validity of this rule can be understood

in relation to the update rule for the matrix-type RI

(equivalent to the measurement update rule of a linear

Kalman filter) given by

R2
wðnewÞ ¼ ½R2

wðoldÞ21 þ fN21f T�21
; ð21Þ

where N is a matrix specifying the measurement noise,

and s and a are eliminated for simplicity. Setting N ¼ s2I
and ignoring the non-diagonal components in this

equation, we obtain an update rule for the kth diagonal

term as

R2
wkkðnewÞ ¼ R2

wkkðoldÞ½1 þ R2
wkkðoldÞf 2

k =s
2�21

< R2
wkkðoldÞ½1 2 R2

wkkðoldÞf 2
k =s

2� ð22Þ

(if the second term is sufficiently smaller than 1), or

DR2
wkk < 2R2

wkk·R2
wkkf 2

k =s
2 ¼ 2ð1=s2Þf 2

k ðs; aÞR
4
wk: ð23Þ

This resembles the second term of Eq. (20b), if we

regard aR ¼ ð1=s2Þ: By contrast, the first term of Eq. (20b)

represents the increment of the variance based on the

TD error, which may correspond to the increment of

the variance from the prediction in the Kalman filter

algorithm. If this term is zero, which means that both

the TD error and the future RI are zero, the RI of

the current state will decrease uniformly. Nevertheless, the

RI is kept at a certain level while some TD error is

observed.

5 The original work on the reliability concept (Sakaguchi & Nakano,

1992) dealt with the matrix type of reliability. In the original paper, the

weight vector and its covariance matrix were updated using the Kalman

filter algorithm. The algorithm presented here approximates the update rule

used for the covariance matrix of a Kalman filter.
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The algorithm for the actor-critic model is almost the

same. First, the RI for a value function is defined by

R2ðs; aÞ ¼
X

k¼1;K

R2
VkðaÞf

2
k ðsÞ; ð24Þ

where RVkðaÞ is the kth element of the RI of the weight

vector wV ðaÞ: The index RVk (or RV ) is updated using

DR2
VkðaÞ ¼ aR½ðd

2 þ g2
RR2ðs0ÞÞ=R2ðs; aÞ 2 1�f 2

k ðsÞR
4
VkðaÞ:

ð25Þ

Again, R2ðs; aÞ is averaged over a or R2ðs; apÞ is chosen

when it is used for action selection.

3.4. Adaptive adjustment of the learning coefficient

As described above, the RI presumably converges on the

standard deviation of the reward sum (or TD error) after

sufficient learning steps, in a stationary environment. This

means that the RI and TD error assume comparable values

after learning. This, in turn, implies that learning has not

progressed well if the RI and TD error are very different.

If the TD error is much larger than the RI, that is, if the

agent observes an unexpectedly large error, this suggests that

the environment has changed drastically. In such cases, it is

desirable to increase the learning coefficient so that the agent

catches up with the environmental change more quickly.6 If

the TD error is much smaller than the RI, on the other hand, it

means that the RI is meaninglessly large. It is desirable to

increase the learning coefficient also in this case.

There are various ways of implementing this idea in an

actual algorithm. The following rule gives one such

possibility

a ¼ minða1;a0 maxð1; llog d2 log RðsÞlÞÞ; ð26aÞ

and

aR ¼ minðaR1;aR0 maxð1; llog d2 log RðsÞlÞÞ; ð26bÞ

where a0 and aR0 are the learning coefficient in ordinary

trials, and a1 and aR1 are the maximum limits of the

respective learning coefficients. Many variations may exist,

including more sophisticated ones.

3.5. Determining parameter h

We would like to discuss how to determine the arbitrary

parameter h. Some suspect that there is no good way to

determine h, as there are no guidelines for the temperature

parameter. This is partially correct. If we wish to determine

the optimal value of this parameter, we must search for it by

trial and error.

However, we can approximate its value using the

following guideline. After sufficient learning steps, the RI

converges on the standard deviation of the value function or

its lowest limit R1 when the RI discount rate gR ¼ 0: In this

situation, the ratio R1=h corresponds to the temperature

parameter T in the original Boltzmann rule (see Eqs. (1) and

(2)). Therefore, if we can give a desirable temperature in an

asymptotic situation, we can determine the parameter h

based on this relation. For example, imagine that the

difference in the value functions for different actions is

around 1. Then, the agent would select the action whose

value function is the highest almost deterministically, if T is

0.01 or less (because expðDQ=IÞ ¼ expð1=0:01Þ . 1043). In

this case, the Boltzmann method results in greedy action-

selection with T ¼ 0:01 in an asymptotic situation. There-

fore, we can set h ¼ 1 when R1 ¼ 0:01 if we want the agent

to perform in an equivalent manner in an asymptotic case.

This becomes complicated when gR is close to 1, because

the RI of a current state is given by the sum of the RI values

for succeeding states and the standard deviation of the value

function. If the RI of the future state does not decrease

enough, the RI of the current state barely reaches the

minimum limit R1; inevitably implying that the asymptotic

performance was worse than designed.

Therefore, there is no guarantee that h determined

using this guideline always gives good results. The

behavior of the proposed algorithm following this guide-

line is shown in the numerical experiment and further

discussed in Section 4.3.

3.6. Incompatibility with actor-critic models

Thus far, we have given the algorithm of the RI-based

method in parallel for the Q-learning system and for the

actor-critic model. Here, we would like to point out the

possibility that the RI-based actor-critic model may not

work well.

The most essential point is that the action selection in the

actor-critic model is not directly linked to the state value

function. The function used in the actor module ðqðs; aÞÞ is

updated separately from the state-value function VðsÞ; and

values of qðs; aÞ are not necessarily comparable to the value

function. This brings along a discrepancy that the reliability

itself is determined based on VðsÞ whilst the reliability

operates on different quantity qðs; aÞ in action selection. This

discrepancy is inconsistent with the original simple

philosophy of reliability and makes the behavior of the

RI-based actor-critic model difficult to understand.

For example, the guideline for determining h discussed

in the previous section cannot be applied to the actor-critic

model. Because values of qðs; aÞ are not necessarily

comparable to the value function (generally, the range of

qðs; aÞ is larger than that of Qðs; aÞ though its absolute value

depends on the learning coefficient a), it is hard to know

appropriate values of the temperature parameter, T ; and

thus, h:

6 In a separate paper (Sakaguchi & Takano, in preparation), we discuss a

modular learning network that switches modules when the observed error is

much larger than the RI of the currently selected module.
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Actually, this incompatibility gives harmful effects on the

behavior of RI-based actor-critic models. Some examples

will be illustrated in the numerical experiment, below.

4. Numerical experiments

4.1. Experiment 1: maze with walls

4.1.1. Problem

First, we examine the learning performance of the

proposed algorithm with a common maze problem. We

also discuss whether the size of a problem affects

performance.

The structure of the maze problem is shown in Fig. 1. The

agent’s task is to find the best action-sequence for moving

from the start to the goal in a 2D-maze or grid world. The

agent receives a punishment of 1 for every step taken, and a

punishment of 2 if it leaves the field. The agent tries to find a

path that minimizes the total punishment along the path,

where the optimal path agrees with the shortest path.

The maze size was 12 £ 4N, and the minimum

number of steps required for the solution was 8N þ 7.

We examined the learning performance for the cases N ¼

1; 2; 4; 8; and 16.

4.1.2. Condition

We adopted Q-learning and the actor-critic model to

solve this problem, and compared the performance of the

conventional methods and the proposed method separately

for each architecture. For conventional Q-learning, we

examined both the 1-greedy and Boltzmann action

selection methods; here, we deal mainly with the

Boltzmann method. We updated RðsÞ commonly for

different actions.

As the procedure involved in each learning step was

explained above, here, we summarize the parameter values

used in the experiment. The learning coefficients for the

value function were a0 ¼ 0:1; a1 ¼ 0:5; b0 ¼ 0:01; and

b1 ¼ 0:05; and that for the reliability was aR ¼ 0:1: The

discount rate (g) was 0.99. The lowest limit of the RI ðR1Þ

and parameter h of the Q-learning system were set to 0.01

and 1, respectively, so that the asymptotic performance of

the system was compatible with that of the Boltzmann

method with T ¼ 0:01 (Section 3.5). As for the actor-critic

model, we set R1 ¼ 0:01 and h ¼ 10: In order to see the

effect of the RI discount rate ðgRÞ (Section 3.3), we ran

the experiments with various values of gR; although the

following explanation deals mainly with the extreme cases

gR ¼ 0 and 0.99 ð¼ g2Þ:

To evaluate the learning performance, we first examined

the learning curves for various methods, which helped us to

understand the performance intuitively. Next, we ran

statistical tests to compare the different methods. In the

following, the performance of the Boltzmann method with

temperature T ¼ 0:01 (for Q-learning) or T ¼ 0:1 (for the

actor-critic model) is treated as the baseline for this

comparison. We tried various temperatures in a preliminary

examination, and found that these values marked close to

the best performance. For the Q-learning system, the setting

T ¼ 0:01 is also favorable for comparing the conventional

and proposed methods, because the parameters of the

RI-based system were determined so that its asymptotic

performance was compatible with this condition. We

repeated the procedure 30 times using different pseudo-

random numbers.

4.1.3. Results

Since the learning performance did not differ remarkably

when the maze was small (i.e. N ¼ 1 and 2), we discuss only

the results for the larger mazes.

First, we show the learning curves of some representative

cases, where a Q-learning agent solved a maze of size N ¼

4: Fig. 2 depicts the quartiles of punishment (i.e. the number

of steps required for an episode) as a function of the number

of episodes on a logarithmic scale, together with the best-

and worst-case data. We used the average over 25 episodes

to smooth the original bumpy curves. Data are shown for the

following cases: the Boltzmann method with a fixed

temperature T ¼ 0:01 (i.e. the baseline condition)

(Fig. 2a), the RI-based method with gR ¼ 0 (Fig. 2b and

c), and the RI-based method with gR ¼ 0:99 (Fig. 2d and e).

Fig. 2c and e show cases in which an adaptive learning

coefficient was introduced.

The learning speed of the RI-based method with gR ¼ 0

was almost the same as that of the baseline algorithm. Since

the parameters were set so that the asymptotic randomness

equaled the baseline method, this implies that the proposed

algorithm behaved no better than the baseline performance

when gR ¼ 0: Conversely, learning was accelerated remark-

ably with the adaptive learning coefficient, as shown in Fig.

2c. The most notable difference is in the shape of the

learning curve. With this option, the slope of the learning

curve (on a logarithmic scale) remained almost constant

until the end of learning while without this option, it became

flatter as learning proceeded. As a result, the median

punishment reached the minimal value much earlier with

this option than without this option.

Fig. 1. A maze problem. The agent has to move from the start (S) to the goal

(G) using the shortest path. The minimum number of steps to reach the goal

is 8N þ 7.
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On the other hand, when gR ¼ 0:99; the learning

speed was not as fast as in the above cases; the time at

which the median punishment reached the asymptotic

level was delayed. This is plausible, because with a large

gR; the RI of a given state cannot decrease until the

RI values of the succeeding states are reduced

sufficiently. However, we should note that the slope of

the learning curve remained steep until the end of

learning, even without the adaptive learning coefficient.

This implies that an agent with a large gR learns slowly

at first, but catches up with the other agents beginning at

the midway point. Again, learning was remarkably

facilitated with the adaptive learning coefficient, as

in Fig. 2e.

Fig. 2. Results of Experiment 1. The learning curves are drawn on a logarithmic scale for the case in which a Q-learning agent solves a maze of size N ¼ 4:

(a–e) show the quartiles of punishment in 30 experiments as a function of the number of episodes, together with the best- and worst-case data. The results are

shown for the (a) Boltzmann method with T ¼ 0:01; (b and c) the RI-based method with gR ¼ 0; and (d and e) the RI-based method with gR ¼ 0:99: (c and e)

show the results with the adaptive learning coefficient (ALC). (f) shows the median data for the RI-based method with various values of gR: See the text for

details.
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Some people may wonder how the performance is

when the RI discount rate takes intermediate values.

When no adaptive coefficient was introduced, learning

gradually slowed down with larger gR (data not shown).

Interestingly, however, the situation was different when

the adaptive coefficient was introduced. Fig. 2f shows the

median learning curves in this case, where the two

thick lines indicate the results for two extreme cases

(gR ¼ 0 and 0.99), and the other thin lines indicate

results for intermediate cases (the broken line is

the result using the baseline Boltzmann method). When

gR , 0:8; the learning speed improved with larger gR;

although it deteriorated as gR approached 1. We have no

explanation for this facilitation, but a balanced combi-

nation of a slow decrease in the RI (with a large gR) and

fast learning of the value function (with a large a) might

bring about this result. Here, we only report this curious

phenomenon.

In summary, the above results led to three conclusions.

First, the performance of the proposed method with gR ¼ 0

is almost the same as with the conventional Boltzmann

method. Second, the learning performance changes with the

RI discount rate gR : when gR is large, learning is slower

initially, but reaches the asymptote more rapidly, as

compared to the case gR ¼ 0: Third, adaptive adjustment

of the learning coefficient works well.

To test these views, we ran statistical tests. We performed

the Wilcoxon rank sum test for each bin of 50 episodes (the

t-test was not adopted because the punishment did not obey a

normal distribution). Fig. 3 shows the change in the p-values

of the tests as a function of episode, where several

methods were compared with the baseline Boltzmann

method ðT ¼ 0:01Þ: The left and right columns correspond

to the results in cases N ¼ 8 and 16, respectively. The

p-value is shown on a logarithmic scale and the centerline

corresponds to p ¼ 1: The gray region indicates no

significant difference (significance level 5%), and location

of the curve above or below this region indicates whether the

performance of a given method was significantly superior or

inferior to the baseline method, respectively. Vertical dotted

lines indicate the time when the median data of the baseline

method reached the optimal level.

This figure clearly supports the above views. First, the

performance of the RI-based algorithm with gR ¼ 0 was

comparable with, but never superior to, the baseline method

(Fig. 3a). The shape of this curve resembles the curve for the

Boltzmann method with a higher temperature parameter

(i.e. T ¼ 0:1), shown in Fig. 3c. This is reasonable, because

in an equivalent manner the RI-based algorithm realizes a

higher temperature parameter in the course of learning. By

contrast, the performance was significantly improved when

the adaptive learning coefficient was introduced. Perform-

ance surpassed the baseline method, and it remained

superior until the end of learning.

Conversely, the RI-based method with gR ¼ 0:99 took

many more steps in the first phase of learning. Even with

this slow start, it surpassed the baseline method by the

midpoint of learning (Fig. 3b). This represents the features

of the proposed method well, i.e. it reflects that the initial

phase of learning involves much trial and error. Again,

learning was facilitated using the adaptive learning

coefficient.

Finally, we summarize the properties of other conditions

that have not been commented on above. First, the behavior

of the 1-greedy algorithm was comparable with that of the

baseline algorithm initially, but its asymptotic performance

was significantly worse, especially for larger problems

(Fig. 3c). This is inevitable, because 1-greedy agents are

compelled to make exploratory actions at a given rate and

this forced exploration has an increasing effect as the

problem size increases. Conversely, learning was slowed

with a higher temperature parameter ðT ¼ 0:1Þ throughout

the learning steps (Fig. 3c).

Actor-critic models (Fig. 3d) differed from the Q-

learning system in several aspects. First, the asymptotic

performance of the actor-critic model was not as good as

that of Q-learning: the actor-critic agent could not reach the

optimal solution in some experimental sessions, and its ratio

increased with problem size (data not shown). In actuality,

the median punishment did not reach the optimal value

when N ¼ 8 or 16 (which is why no vertical dotted lines are

drawn in (d)). This tendency was common to the

conventional and proposed methods. Second, unlike the

Q-learning system, learning with the proposed method was

faster initially, but slowed halfway through. In other words,

the RI-based actor-critic model showed just the opposite

features to the RI-based method. This confirms our

suspicion that the RI-based method may not compatible

with the actor-critic models.

A possible reason for this phenomenon is an

indirect link between the values of qðs; aÞ and the RI.

The update rule for qðs; aÞ (Eq. (10)) includes the term

1 2 pðs; aÞ; where pðs; aÞ is the action selection prob-

ability. This term was originally introduced to regulate

the increase in qðs; aÞ when the corresponding pðs; aÞ

approaches 1; but if the probability is restrained by the

large RI value, then qðs; aÞ could unnecessarily increase,

and as a result, action selection policy would be fixed

precociously.

Therefore, the specificities of the actor-critic model stem

from its architecture, in which the RI is defined for the

critic’s VðsÞ but it affects action selection based on the

actor’s qðs; aÞ; as we discussed in Section 3.6.

In summary, the result of Experiment 1 shows that in a

stationary environment, the proposed method with a large

RI discount rate ðgRÞ showed its characteristic feature (i.e.

there was more trial and error in the initial phase and rapid

learning from the midpoint on), especially with an adaptive

learning coefficient. The next experiment examines the

proposed method’s ability to adapt to changing

environments.
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4.2. Experiment 2: Temporally variable grid world

4.2.1. Problem and conditions

In the second experiment, we examined the ability of

different methods to adapt to a time-variant environment. To

this end, we adopted a non-uniform 2D-grid world problem,

where the punishment (or negative reward) given at a state-

transition depends on the position in the world, and its

spatial distribution varies temporally. The agent’s task is to

find the best action-sequence for moving from the start to

the goal with minimum punishment. The punishment

distributions were designed so that the total punishment

along the optimal path was always 20, for any environment.

The environment changed every 5000 episodes, and one

experimental session consisted of 50,000 episodes (i.e. 10

different environments). Since the minimum punishment

was kept constant, the punishment in any episode should

return to this value if the agent can completely adapt to

Fig. 3. Results of Experiment 1. The p-values of the Wilcoxon test are depicted as a function of the number of episodes. (a–c) show the results for the

Q-learning system, where the target methods are compared to the Boltzmann method with T ¼ 0:01 (baseline method): (a) the RI-based method with gR ¼ 0;

(b) the RI-based method with gR ¼ 0:99; and (c) the 1-greedy method ð1 ¼ 1%Þ and Boltzmann method with T ¼ 0:1 (i.e. higher temperature). (d) shows the

results for the RI-based actor-critic model with gR ¼ 0; where the baseline is the case T ¼ 0:1:
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the new environment. Therefore, we compared the adap-

tation ability by examining how closely the punishment

returned to the minimum value after every environmental

change.

We ran the experiment using two types of environmental

change, stepwise and gradual. In the former condition, the

punishment distribution was switched abruptly every 5000

episodes, while in the latter condition, the punishment value

changed gradually for 3000 episodes (referred to as the

changing phase, below), and remained constant for the

remaining 2000 episodes (the stationary phase). Note that

the punishment along the optimal path occasionally

deviated from 20 during the change in the latter condition.

In the following, our explanation concentrates on the

gradual condition, since the results in the stepwise condition

were the same, but less remarkable than those for the

gradual condition.

To avoid the results being dependent on a specific

punishment distribution, we ran the experiment 50 times

using different environment sequences (i.e. in all 500

different environments were used in the experiment) instead

of using a fixed sequence, and averaged the learning curves

over these sequences.

Here, we report only the results for Q-learning because

the RI-based actor-critic model showed only inferior

performance as in Experiment 1. The parameter values

were the same as in Experiment 1.

4.2.2. Results

We start by comparing the learning curves for the

Boltzmann and RI-based methods. The upper panel in

Fig. 4a shows the temporal change in the punishment per

episode for the Boltzmann ðT ¼ 0:01Þ and RI-based

(gR ¼ 0:99 with the adaptive coefficient) methods. Quartiles

and best/worst data for 50 different sequences are shown on

a linear scale. The gray regions indicate the changing

phases. The lower panel shows the temporal change in the

average entropy of action selection during an episode,

which indicates the overall randomness of action selection.

To flatten the curves, these values were calculated for bins

50 episodes wide.

First, we would like to discuss the change in entropy of

action selection. Generally, the entropy increased at every

environmental switch, and then fell back to almost zero, for

both algorithms. Note that this cyclic change was also

observed for the Boltzmann method with a fixed tempera-

ture, because the value function Qðs; aÞ can take similar

values for different actions ðaÞ on route to adaptation.

However, the entropy traced different curves with the two

methods. First, the amplitude of the entropy change was

much larger for the proposed method. Second, the entropy

started to increase just after the environment switch for the

proposed method, meaning that the agent successfully

detected the environment change. Therefore, with the

RI-based method, more explorations were performed at

environmental changes, as expected.

Next, let us examine the learning performance. The

learning curves showed similar patterns with both methods:

they increased in the first half of the changing phase,

decreased in the second half, and remained essentially

constant during the stationary phase. Looking closely at the

median curves, however, we see that the punishment in the

stationary phase was smaller with the proposed method. It

decreased below 25 with the RI-based method, while it

remained between 25 and 30 with the conventional method.

Moreover, the quartile (25%) curves always returned to the

optimal value with the proposed method, but not with the

conventional method.

The results for the other conditions are summarized in

Fig. 4b, where only the median learning curves are shown.

The left figure includes the data for the Boltzmann method

with higher temperatures (i.e. T ¼ 0:1 and 1) while the right

figure shows the data for other RI discount rates ðgRÞ: The

data shown here are for the cases with the adaptive learning

coefficient, but the adaptation ability did not change

significantly irrespective of this option, presumably because

of the gradual environmental change (see the results of the

statistical tests below).

The following findings are notable:

1. With the Boltzmann method, using higher temperatures

improved the adaptation ability somewhat.

2. The adaptation ability of the proposed method with gR ¼

0 was comparable to that of the conventional method.

This was true irrespective of whether the adaptive

learning coefficient was used (data not shown), implying

that the RI-based algorithm cannot demonstrate its

adaptation ability with a small RI discount rate.

3. The adaptation ability improved with a higher RI

discount rate. In this experiment, good performance

was obtained for gR . 0:9: This was true both with

and without the adaptive learning coefficient.

To compare the performance quantitatively, we ran

statistical tests. As in Experiment 1, we took the Boltzmann

method with T ¼ 0:01 as the baseline method, and

compared the other methods to it, using a Wilcoxon test.

The results are shown in Fig. 5.

The test supported the above view. When gR ¼ 0:99

(Fig. 5a), the performance of the proposed method

was inferior in the changing phase (the gray regions), but

superior in the stationary phase (the white regions), to that

of the conventional method. This clearly shows that the

proposed method made more explorations at environmental

change, and performed better in the stationary environment.

This feature was observed irrespective of introducing the

adaptive learning coefficient; in both cases, significant

superiority was observed in five out of nine environments

(the first environment was excluded because it does not

represent adaptation ability). In a supplementary experiment

(data not shown), this superiority continued and was even
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strengthened until at least 100,000 episodes (i.e. 19

environmental switches).

In the case gR ¼ 0 (Fig. 5b), the performance of the

proposed method was not significantly different from that

of the conventional method. This confirms that the

adaptation ability of the proposed method can be

demonstrated with a large RI discount rate. This effect

probably occurs because the RI of a given state is kept

high until those of the succeeding states become

sufficiently small, as pointed out above. As for the

present problem, this effect reached significance for gR .

0:9 (Fig. 5c), and reached a plateau for gR . 0:95

(data not shown).

Summarizing Experiments 1 and 2, when the environ-

ment was stationary, learning was fastest with gR ¼ 0:

Using a large gR slowed initial learning, but improved the

ability to adapt to environmental change. The best value for

gR may depend on the problem; at present, we do not know

how to decide the best value.

4.3. Experiment 3: acrobot

4.3.1. Problem and conditions

The third example is the famous ‘acrobot’ problem. In

this problem, a robot has to raise the tip of its second link (or

foot) above a certain level, utilizing the torque imposed at

Fig. 4. Results of Experiment 2. (a) shows the learning curves and temporal changes in the action selection entropy for the Boltzmann method with T ¼ 0:01

(left panel) and for the RI-based method with gR ¼ 0:99 (right panel). The gray regions indicate the changing phase. The learning curves are given using

quartiles and the best/worst data for punishments in an episode. (b) summarizes the results in the other conditions, where the learning curves are given using the

median data only. See the text for details.
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the second joint (Fig. 6). Since it is impossible to raise its

body in one swing, the robot has to swing repeatedly,

increasing the amplitude of the swing until its foot goes

beyond the goal.

The robot’s state is represented by a pair of joint angles,

i.e. by two continuous variables. This means that a tabular-

form value function cannot be used to solve this problem.

Here, we used the tiling method of Sutton and Barto

(Section 11.3, pp. 270–274, 1998) to represent the state, and

applied the weighted-sum type of algorithm described in

Section 3.3.2. The detailed settings of the dynamical

equation, physical parameters, and tiling design are the

same as described in Sutton and Barto (1998). As a result,

we used a 25,028-dimensional feature vector with 48 tiles.

An experimental session continued until the robot

achieved 2000 goals. To examine ability to adapt to

environmental change, we considered the case in which

the sensor configurations and robot’s physical parameters

(such as the length and weight of the links) changed every

500 goals (i.e. four different conditions). Only stepwise

environmental change was tested, since a gradual change

did not cause a continuous change in the feature vectors

when using the tiling method. The experiment was repeated

50 times for statistical analysis. Unlike Experiment 2, an

identical environment sequence was used repeatedly in this

experiment. We report only the result with the Q-learning

system.

For the acrobot problem, it was expected that the value

function (i.e. the expected number of steps to the goal)

would be more divergent among alternative actions than in

the grid-world problem, because the future trajectory

depends largely on the direction of the force in the current

state. Considering the discussion in Section 3.5, this means

that the optimal action selection in the asymptotic situation

can be reached with a higher temperature. In actuality, a

preliminary examination revealed that the performance of

the fixed-temperature Boltzmann method was best with

temperatures between 0.1 and 1 and deteriorated at lower

temperatures: The robot sometimes could not reach the goal,

even when T ¼ 0:1; and it had trouble adapting to

environmental changes with lower temperatures. Therefore,

we chose the case T ¼ 0:5 as the baseline condition.

As for the RI-based method, we set the lowest limit of the

RI of each weight as R1f ¼ 0:1; which gave the RI of the

value function of R1 < 0:7ð¼ ð48 £ 0:1 £ 0:1Þ0:5Þ; because

we used 48 tiles). This setting seemed sufficient to avoid

overflow when calculating the action selection probabilities.

To compensate for a large R1; we set h ¼ 10; which was

larger than in the previous experiments. Accordingly, the

equivalent temperature was 0.07 (¼ R1=h; see Section 3.5).

Here, note that the fluctuation in the value function might

increase with the tiling method, since the feature vector and

true system-state do not have a one-to-one correspondence.

As a result, we suspected that the RI of the value function

did not reach the lowest limit defined above, unlike the

previous experiments. This point will be discussed below.

4.3.2. Results

Learning curves and the Wilcoxon test were used to

compare the different methods. We show only the results

Fig. 5. Results of Experiment 2. The p-values of the Wilcoxon test are

plotted as a function of the number of episodes. The RI-based method with

several RI discount rates is compared with the Boltzmann method with

T ¼ 0:01 (baseline method): (a) gR ¼ 0:99; (b) gR ¼ 0; and (c)

intermediate values of gR: The performance of the proposed method with

a large RI discount gR was significantly better.

Fig. 6. Experiment 3: The acrobot problem. The ‘acrobot’ consisted of two

links, and a torque generator at their joint. The task was to swing the tip of

the second link above a given height.
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using the adaptive learning coefficient, since the behavior of

the proposed method without this option was comparable to

that of the conventional method. We used average data for

every bin 10 episodes wide when drawing these curves.

Fig. 7a–d shows the learning curves and the temporal

change in the p-value of a statistical test. The learning

curves are shown using quartiles (and the best and worst

data) in Fig. 7a–c, while only the median is shown in

Fig. 7d, where the results for two values of gR are

depicted. Note that the optimal solution depended on

the environment, because the physical parameters changed

when the environment changed. For comparison, we show

the median punishment of the baseline method when a fresh

agent experienced 500 episodes in a given environment

(single environment condition).

In general, the tendency was similar to that in the

previous experiments, implying that with the Boltzmann

method, the punishment changed with every environmental

change, but converged on a certain level after about

300 episodes. The median data reached this performance

Fig. 7. Results of Experiment 3. The learning curves and relative performance are shown for four cases: (a) the Boltzmann method with T ¼ 0:5; (b) the RI-

based method with gR ¼ 0; (c) the RI-based method with gR ¼ 0:99; and (d) the RI-based method with intermediate values of gR:
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in the single environment condition; consequently, the

Boltzmann method successfully adapted to the environ-

mental changes with this temperature.

The RI-based method performed better with gR ¼ 0: This

was clearly supported statistically; the p-value was

consistently significant. One shortcoming is that the worst-

case performance was inferior to the baseline method.

By contrast, the performance with gR ¼ 0:99 was

comparable or slightly inferior to that of the conventional

method. The performance with intermediate values of gR

was between these two extremes. The apparent performance

changed gradually with larger gR; that is, the overall

performance deteriorated, but the worst-case performance

was improved. Balanced performance was obtained with

0:5 , gR , 0:9: Some of this feature can be observed in (d),

which shows the results for gR ¼ 0:6 and 0.95.

In order to understand the reason for this tendency, we

examined the temporal changes in the action selection

entropy and the RI. Fig. 8 shows these data for the baseline

and proposed methods with some values of gR: We see that

both entropy and the RI depended greatly on gR: They

changed in synchrony with the environmental changes when

gR was small (i.e. gR ¼ 0 and 0.6). That is, adaptive action

selection worked well in these conditions. When gR ¼ 0:99;

however, their changes were not as sharp or closely linked

to the environmental changes. The latter feature was also

observed in the baseline method, consistent with the fact

that the performance with gR ¼ 0:99 was comparable to the

baseline method. Considering that the Boltzmann method

could not adapt to the environmental switches with lower

temperatures, this implies that the adaptation ability of the

baseline method was realized with this relatively large

entropy.

Fig. 8 also shows that the minimum value of the RI did not

reach the designed value (R1 ¼ 0:7) in any case. It remained

between about 40 and 50 when gR ¼ 0:99; and this is why

learning did not proceed in this condition. This result is

probably because the fluctuation in the value function

remained large due to the tiling method, which prevented

the RI from decreasing, and the effect was propagated to

previous states when the RI discount rate was large.

Therefore, it is not necessarily optimal to set gR ¼ 0:99

(¼ g2) when there is large fluctuation in the value function.

In summary, the proposed method for weighted-sum type

value functions worked as well as for tabular type value

functions. In addition, this experiment demonstrated that

using the largest RI discount rate (i.e. gR ¼ 0:99) does not

always work well if the value function fluctuates. As

mentioned above, there are some optimal values of gR;

which are dependent on the task and system representation.

It seems difficult to determine these values of gR in advance

based on definite guidelines. A possible solution to this

problem is to control gR dynamically, depending on how

learning proceeds. One idea may be to enlarge gR

occasionally in order to temporally improve the adaptation

ability. Further research is required to evaluate the

characteristics of this option.

5. Discussion and concluding remarks

5.1. Limitations

As described in Section 1, a general practical solution for

the exploration–exploitation problem does not exist. In other

words, we cannot expect any ‘almighty’ method to have

superior performance for all problems (Moore & Atkeson,

1993; Sutton & Barto, 1998). This, of course, is true of the

proposed method, which has some crucial limitations.

The most marked limitation is that the adaptation ability

of the proposed method is evident only when the agent can

detect the environmental change. In other words, the

proposed method does not cope with a change that cannot

be observed in the current path of the agent. This

shortcoming becomes more pronounced as learning pro-

ceeds, because the weight placed on exploratory actions

diminishes as learning proceeds (i.e. the path becomes

fixed).

This limitation can be easily demonstrated using the

‘shortcut maze’ problem (Sutton & Barto, 1998), which is

Fig. 8. Results of Experiment 3. Temporal changes in the action selection entropy and the RI are shown. See text for details.
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a 2D-grid world problem, in which a wall blocks the agent’s

movements, as in Experiment 1. The crucial feature of this

problem is that part of the wall is removed after a certain

number of learning steps and a shortcut appears. In order to

find this new optimal path, the agent must monitor the wall

for changes. That is, the agent has to make exploratory

actions to check for environmental change. With the

proposed algorithm, however, once sufficient learning

steps have elapsed, the agent will not find a new optimal

path because it places little weight on exploratory actions.

This deficit is inevitable, given the basic philosophy of

the proposed algorithm. The proposed algorithm uses a

conservative or optimistic strategy, in which the action

selected by the agent changes if the agent suffers from an

environmental change. The algorithm uses the greedy policy

so long as the agent does not detect a change, and this is why

the proposed method performs well after sufficient learning.

To find a shortcut, a more adventurous strategy would have

to be used. Within the present framework, this can be

realized by increasing the RI globally and forcibly after a

certain interval. However, this ultimately increases the use

of inefficient exploratory actions, degrading the typical

performance.

Therefore, efficient action selection after sufficient

learning is realized at the cost of an inability to detect

unobservable environmental change. Another meta-policy

is required to solve this dilemma.

5.2. Relationship to other attempts

Many solutions have been proposed for the exploration–

exploitation problem, because this is an essential problem to

solve in an on-line reinforcement learning system. This

section examines some attempts that are closely related to

the proposed method.

One proposed solution is a reinforcement-learning

algorithm that uses both expectation and variance of the

value function (White, 1988 for review). In most TD

learning algorithms, the agent uses only Q-values for action

selection, although Q-values simply represent the expec-

tation of the reward function. In some problems, however,

especially in the investment field, the agent has to consider

variance in the reward function in order to limit the risk of

actions. Some recent algorithms solve this problem by

estimating the variance of the reward function using on-line

learning. The method proposed by Sato et al. (2001) is one

such algorithm. They defined an internal variable (corre-

sponding to the RI) that estimates the variance of the

reward, and used it to determine the action. Moreover, they

used the same update rule as Eq. (12) with gR ¼ g2 to

estimate the variance, and proved theoretically that with this

update rule, their estimator converged on the true variance

of the reward asymptotically.

Although the concrete procedures of these methods are

quite similar, the ultimate purpose of utilizing the variance

(or reliability) is quite different. The algorithms involving

variance assume that the environment (or the problem) is

stochastic, but its statistical property is time-invariant.

Using this assumption, the algorithm tries to estimate the

variance (i.e. a parameter of the statistical system) and use it

for optimal action selection. In contrast, the proposed

method does not assume that the environment is time-

invariant. More importantly, it focuses mainly on transient

processes involved in learning, such as adaptive change in

action selection and acceleration of the learning process,

rather than on the asymptotic performance after sufficient

learning. Most variance-involved TD learning pays no

attention to either acceleration of the learning process or

meta-learning. In one exception, Williams (1992) suggested

using the variance parameter of a Gaussian unit to control

the degree of exploration, but he did not give any concrete

method for this control.

In another closely related study, Yoshida and Ishii (2001;

see also Ishii, Yoshida, & Yoshimoto, 2002) controlled the

temperature parameter. They defined the ‘confidence’ of

the state, and reflected it in the temperature parameter of the

Boltzmann rule. Confidence means the variance of Q-values

among actions. Their essential idea is as follows: If the

Q-values are essentially the same among different actions,

the state is not critical. To the contrary, if the Q-values differ

largely among the actions, such a state is very important

because action selection in this state has a large effect on the

reward/punishment that the agent receives. Thus, the agent

should change the weight placed on exploratory actions

according to the variance of Q-values (i.e. confidence).

Combining this concept and other techniques, such as an

exploration bonus, they proposed an integrated algorithm

that gives a good solution to the exploration–exploitation

problem.

The most significant difference between our research and

theirs is that their algorithm does not treat TD learning, but

treats model-based reinforcement learning. Another differ-

ence is that the operations in our proposed method are based

simply on the concept of reliability, while their algorithm

consists of different operations, such as confidence and an

exploration bonus. Nevertheless, the concepts involved in

their algorithm seem quite similar to our research.

5.3. Concluding remarks

We proposed an adaptive action-selection method based

on the concept of reliability, which aims to control the

entropy of action selection dynamically according to the

uncertainty of the value function (i.e. RI). Numerical

experiments illustrated that the proposed method improved

the learning performance and ability to adapt to environ-

mental change, with the help of adaptive adjustment of the

learning coefficient. In addition, we pointed out that the

nature of learning performance depended on the RI discount

rate, that is, how much the agent weighted the uncertainty of

the future state when estimating the uncertainty of the

current state.
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Although this article demonstrates the overall character-

istics of the proposed method, through numerical exper-

iments, it may have hidden deficits. We hope that its

application to various problems will elucidate its charac-

teristics. It is also desirable to evaluate its performance and

limitations based on mathematical grounds.
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