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Abstract—Human haptic perception is not caused by simple mechanical stimulation to the skin; it is achieved
by integrating sensory information from various receptors (such as mechano-receptors and thermo-receptors)
and by observing objects in various ways. The author constructed sensing systems which simulate human
haptic processes in order to clarify the mechanism of such sensory integration and active perception. In
this article, first the author formalizes these processes from a theoretical point of view and constructs an
‘intentional observation’ algorithm on the basis of that formalization. This algorithm is to select appropriate
sensors from many sensors based on information criteria to recognize objects more accurately by fewer
observations. Second, the author describes two kinds of haptic sensing systems which recognize objects’
materials and surface textures utilizing actively several sensor devices, and shows that the proposed algorithm
is effective in these actual systems. Some related problems are also discussed.

1. INTRODUCTION

We human beings realize an effective sensory information processing by integrating
various sensory information and by collecting selectively significant information for
accomplishing the task. Moreover, we deal with a vast amount of information from the
external world by discarding much redundant information. As many psychologists have
pointed out [1, 2], these are remarkable characteristics of human information processing
and play significant roles in human perception.

The purpose of this study is to clarify the mechanism of such sensory integration and
active perception.

Here, the author would like to note that ‘active perception’ differs from ‘active sens-
ing’: it does not mean moving sensors or emitting energy in sensing processes; it
means perceiving objects through various observations according to what we want to
know.

In light of such characteristics of human brains, engineering researchers have studied
‘multi-sensor integration’ [3], ‘sensor fusion’ or ‘intentional sensing’ [4]. Especially in
robotics, object recognition, autonomous locomotion, visuo-motor co-ordination, visuo-
tactile fusion, etc., have been discussed from these points of view.

In order to reveal the mechanism, the author proposed neural network models for
space perception and visual recognition [5-7]. One is a model for a figure recognition
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process which observes local features selectively, forms a global internal image from the
observed features using neural dynamics and recognizes the figure based on the internal
image [7]. This model obtains useful local features actively and integrates them into
internal representation in recognizing a figure.

In the present article, the author concentrates on haptic perception processes.

When perceiving objects by touch, we human beings utilize not only deformation of
the skin, but also information from various sensory organs including thermo-receptors
and proprioceptors. Moreover, we make various observation behaviors, such as rubbing
and pushing, according to what property we want to know. Therefore, the haptic
perception process is an active perception process (this is why the author does not use
the word “tactile” which implies a passive sense, but the word ‘haptic’) and is a suitable
subject for the author’s purpose. '

Touch sensors are developed mainly in the robotics field. However, many of them
are made just for detecting ‘contact’, for example, noticing that the robot body collides
with some obstacles and examining whether the robot hand catches an object. They
are not made from a viewpoint of haptics. Not to lose this viewpoint, the author has
tried to construct haptic sensing systems which perceive objects by actively utilizing
various sensor devices. Since these systems treat feeling of touch, in addition, they will
provide useful suggestions to make a standard for representing human haptic feeling
objectively.

In the first part of this article, the author formalizes an iterative sensory integration
process from a theoretical point of view (Section 2) and constructs an algorithm to select
iteratively useful sensors for accomplishing the recognition task (Section 3), where the
active perception process is described as a sort of iterative experimental design.

In the second part of this article, the author introduces two kinds of haptic perception
systems (Section 4). They observe object properties with several sensor devices and
perceive object materials and surface textures using the active perception algorithm.
It is shown that the proposed algorithm is effective in the actual sensing systems:
they can discriminate objects more accurately by fewer observations with the algo-
rithm. Finally, some problems related to sensory integration systems are discussed
(Section 5).

2. A THEORETIC SCHEME OF SENSORY INTEGRATION AND ACTIVE PERCEPTION

As mentioned in the previous section, sensory integration and active perception are
remarkable characteristics of human brains. However, since we human beings realize
them based on extensive knowledge and intelligence which have developed since our
infancy, it is too difficult to model the whole of the mechanisms. Here, the author
extracts their essence and formalizes them from a viewpoint of information theory.

Figure 1 shows schematically the process of sensory integration and active perception
[8]. The system observes an object with various sensors. Each sensor receives signals
which undergo some pre-processing and sends them to the recognition center. The
recognition center guesses the object through integrating information from the local
SEnsors.

Here, it is assumed that the recognition center cannot use more than one sensor at
the same time. Then, the system needs to select the sensors one by one and to collect
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Figure 1. Schematic model of sensory integration and active perception processes. The system observes an
object by various sensors. Each local sensor receives signals, puts them through some pre-processing, and
sends them to the recognition center. The recognition center guesses the objects by integrating information
from the sensors. The system selects one sensor at a time and collects the information iteratively until it
gets a recognition result.

information iteratively until it gets a recognition result. It is also assumed that the object
state is not changed by observation.

To simplify the following discussion, it is supposed that sensor signals are quantized
into discrete values at the local sensors. Besides, when a sensor has controllable pa-
rameters, it is treated as a set of separate sensors (Fig. 2). For instance, a situation that
a single camera observes an object from various positions can be considered as many
cameras observing the object from their own respective positions. When the system
utilizes one sensor in various manners, the author’s scheme regards each manner as
one ‘sensor’. Accordingly, the local sensors in the scheme represent not only physical
sensors but observation behaviors.

Now, let z, y; (i = 1,...,N), and ¢; (i = 1,...,N) denote the presented object,
the signal detected by the i-th sensor and quantized value of vi, respectively, where N
means the number of the sensors, and ¢ means the model represented in the recognition
center and corresponds to object z in the external world. We call X = {z}, Y; =
{vi}, Qi = {4}, and Z = {¢} object space, sensory signal space, quantized sensory
signal space, and model space, respectively. The numbers of the objects and models
are both M and that of quanta in Q; is K;. In the following, the author equates the
object space and the model space (z = ¢ and X = ) and, for simplicity’s sake, calls a
quantized sensory signal space just a sensory space: the (raw) sensory signal will never
be reffered to below.

It may be noted that the observation process at each local sensor ¢an be regarded as
a process of ‘encoding’ the object state into sensory signals. However, it encodes only
restricted information that can be detected by itself.

On the other hand, the guessing process at the recognition center is regarded as ‘de-
coding’. Since the message from a single local sensor contains only partial information,
the recognition center needs to collect signals from various sensors and to integrate
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Figure 2. Sensor with controllable parameter. If a system utilizes a sensor in various manners, each ob-
servation manner is regarded as a ‘local sensor’. For example, a camera which moves and observes an
object from various positions is treated as multiple sensors, each of which observes the object from its own
position.

them in order to know the object state. This ‘integration’ process is one of the most
significant points of the system.

On the assumption that the system can use only one sensor at a time, how to select
sensors from the available local sensors is an important problem because its perfor-
mance is much affected by whether it selects appropriate sensors or not. Such sensor
selection is the second problem. It becomes rather important when the system must pass
judgement in a short time. Also, it is closely related to the channel selection problem
in communication systems and to the feature selection problem in pattern recognition
systems.

In order to integrate the sensor signals, moreover, it is necessary to understand the
relation between the objects and sensory signals and to make reliable ‘decoders’. In
other words, the system should build an appropriate internal model of the external world.
This is another significant point of sensory integration systems.

Accordingly, the problems are summarized in (1) how to integrate information from
local sensors and to estimate an object state, (2) how to select local sensors, and (3) how
to construct an appropriate internal model. The present article focuses on the former
two problems, especially on the second problem. The third problem will be mentioned
in Section 3.
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Figure 3. Update of probability distribution of model space. The system updates the probability distribution
of the model space using Bayes’ rule. As the system repeats the observation, the entropy of the model space
becomes smaller and smaller. When the entropy becomes smaller than a certain threshold, the system puts
out the model whose probability is the largest as the recognition result.

The author uses the Bayesian method as a solution to the first problem. Concretely, the
system holds the probability of the model space m(£) which represents the recognition
state. Starting from some initial distribution mo(£), the system updates the probability
distribution using Bayes’ rule after every observation (see Fig. 3).

To measure the ambiguity of the recognition, the author considers the entropy of the
model space. The system repeats observations until the entropy becomes smaller than a
threshold value. When this condition is satisfied, the system regards the model whose
probability is the most at the time as the recognition result.

Based on this formulation, the author sets about the second problem.

What sensor should be selected depends on what the system want to know. This
means that observation behavior varies according to the recognition task. Supposing
the system has the ‘intention’ to recognize objects, observation behaviors are affected by
the intention. In this sense, active perception can be thought of as an intentional process,
and hence the author calls the active observation strategy ‘intentional observation’. The
concrete algorithm is described in the next section.

3. AN ALGORITHM FOR INTENTIONAL OBSERVATION
3.1. Sensor selection criterion

In order to measure how much each sensor contributes to recognition, the author uses
an information criterion, that is, mutual information or averaged symmetric divergence.
Hutchinson and Kak dealt with a similar problem [9]; they used the Dempster—Shafer
theory to combine the ‘evidence’ obtained by each local sensor and to measure the
ambiguity of the sensory information.

Mutual information between the model space and the i-th sensory space shows how
much the entropy of the model space is reduced on average when the system obscrves
the object using the i-th sensor. By selecting the sensor which has the most mutual
information, it is expected that the entropy of the model space will be reduced the most.
On the other hand, symmetric divergence indicates ‘distance’ between two probability
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distributions and the system selects a sensor whose averaged divergence is the largest.
It is known that these two criteria are related to each other [10]. Although it is also
useful to use a min-max estimation instead of these average estimations, a min-max
method is not discussed in this article.

3.2. Sensor selection algorithm

First, the author deals with the case in which the sensor signals have no mutual inter-
action.

Let m¢(§) and L, denote the probability distribution of the model space and the entropy
of the model space at time ¢, respectively. L, is written as

M

L= —m(€)logm(¢). )

£=1

If the system observes the object with the i-th sensor and gets a signal g;, then the
entropy will become

M

Lepa(gi3i) = Y —meq1(6, ) 10g mey1 (€, i), ()
é=1

where

_ pi(gi [§)
16, 9i) = W" m(£),

M
P(gi) = pigi | &)m(€)

e=1

and p;(g; | £) is the conditional probability of signal ¢; conditioned on object £&. The
system cannot know the true value of g; before it actually observes the object. Then,
the system can only estimate its expected value,

K
(Le+1(@) = D P(gi)Let(gis )- 3
gi=1 ‘

Mutual information Iy(i) between the model space and the i-th sensory space is the
expected entropy reduction of the model space if the system observes the object with
the i-th sensor and is written as

L) = L — (Ley1 ()

= - pi(gi | €
=) m i(gi | §)1 L 3
2,70 2 pl | Oloe = o

Q)
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On the other hand, symmetric divergence g;(¢;,&2) (1,€2 € E) between pi(g; | £1) and
pi(gi | &2) is given as

9i(61,62) = qz:_l (pilgi | €2) — pi(ai | €2)) log ilg' : 2; R

9i(£1,€2) 2 0 always holds and g;(¢;,¢2) is equal to O if and only if

pi(gi | &1) = pi(gi | £2)-

However, it is not ‘distance’ in a strict sense because it does not satisfy triangle in-
equality. Averaging g;(£1,£2) over all pairs of the models (¢;,¢&2), we get the averaged
symmetric divergence,

M

Gi(i) = Y m(E)me(€2)gil6r, E2)- (6)

§1.62

Note that g;({1,£2) is independent of m(€): the system can calculate g;(¢, &) beforehand
as long as the conditional probabilities p;(g; | €) are fixed.

The system calculates I,(i) (or Gi(¢)) for every : and selects one which gives the
largest value of Iy(i) (or G¢(i)). Let 7 denote the index of the selected sensor.

After getting sensor data g; actually by the selected sensor z, the system calculates
posterior distribution m,(£) using Bayes’ rule as

JACHES)
Yooy pi(a; | m)me(n)

and updates the entropy using m.1(£):

m+1(6) = m(£), (7

M

Leyi = ) —mipa(§) log meya ). ®

£=1

If L¢y, is smaller than threshold 6, the system selects the model whose probability is
the most as the recognition result. If not, it continues the observation process.

In generally, we may set the initial distribution mo(¢) as a uniform distribution, that
is, mo(§) = 1/M. Given some prior knowledge of the object, the system can determine
the initial distribution according to the knowledge.

In this article, the author uses discrete distributions as the probability distributions
because the signals are quantized into discrete values. If the sensing signals are subject
to Gaussian distributions, the system can estimate and update the distributions in a
parametric manner and hence reduce the amount of computation.

The sensor selection process is interpreted intuitively as follows. Using prior dis-
tribution m¢(¢) and conditional probabilities p;(g; | £), the system calculates the prob-
ability distribution P(g;) (= ZE pi(gi | €)m:(€)) which predicts what signal tends to
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be detected by the i-th sensor. If the distribution concentrates on some specific val-
ues, the signals detected by the sensor would be almost the same for all the objects
and accordingly the sensor has little meaning to use. If the probability is broadly
distributed, to the contrary, it is expected that the system can restrict the candidates
in the model space using the sensor. The proposed algorithm selects such a sen-
SO

Next, suppose that two sensor signals are rather correlated to each other. Assume that
the system uses one of them and updates the distribution of the model space. Then,
the posterior distribution of the other sensory space will be narrower and accordingly
mutual information will be reduced. It means that the system does not select the sensor
whose signal is correlated to the signals already used.

3.3. Sensor selection through feature space

In the previous section, we have dealt with the case in which multiple sensor signals
have no mutual interactions. However, it is often the case that the signals make sense
only if they are given at the same time (p;;(gi,q; | ) # pi(ai | €)p;(g; | £)). Consider a
simple case that the recognition problem has an exclusive-OR structure, that is,

1
pi2(1,1[1) =p12(2,2 | 1) = p12(1,2 | 2) = p12(2,1 | 2) = 3

and
p12(1,1]2) = p12(2,2 | 2) = p12(1,2 | 1) = p12(2,1 | 1) =0

hold (where E = {1,2}, @; = Q> = {1,2}, and N = 2). In this case, the system
obtains no information if it knows a value of either ¢; or g»: the probability distribution
of the model space does not change when the system updates the distribution because
pi(gi | €) = 1/2 for all : and ¢. In order to treat such a case, the author considers a
product space of the interacting signal spaces and calls it an ‘AND feature space’ or a
‘conjunctive feature space’.

When two sensor signals are strongly correlated to each other, on the other hand, the
recognition center can get enough information even if it selects only one of them. It is
also useful to prepare a feature space which unifies such correlated signals. The author
calls this unification space an ‘OR feature space’ or a ‘disjunctive feature space’. Thus,
the system constructs an AND feature space for interacting signals and an OR feature
space for correlated signals. The former feature is determined when all of the related
signals are given, and the latter feature is determined when one of the signals is given
(see Fig. 4).

Let Fi(lki)z...i,.(.) and c; denote the feature space generated from sensory spaces Q;,,
Qiy,- .., Qi,x) and the required observation times to get the feature, respectively. Fol-
lowing the idea described in the previous section, the system selects a feature or a sensor
which is expected to bring much information. In this case, the sensor selection algo-
rithm is inevitably complicated because the system must take account of the observation
cost ¢x and because one sensor (or observation) is related to multiple features. Anyway,
the system needs to estimate the expected entropy reduction after several observations,
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Figure 4. Feature space. The system constructs an AND feature space for interacting signals and an OR
feature space for correlated signals.
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Figure 5. Selection of observation sequence. When selecting observation sequences, the system estimates
the expected entropy reduction after every observation sequence, assigns the value to the corresponding node
of the tree, and selects the best sequence using a tree-searching method.

that is, the system selects not a single observation but an observation sequence con-
sisting of multiple observations. Here, a tree-searching method will be useful (Fig. 5).
The system estimates the entropy reduction for every observation sequence, assigns the
values to a node of the tree and then selects the best sequence using a tree-searching
method.

Since the required calculation increases rapidly as the searching depth increases, it
is not hopeful to search to too much depth. (It would be nonsense if the cost of
sensor selection became higher than that of observation!) Actually, the system should
determine the appropriate depth according to a trade-off between the calculation cost
and the observation cost.
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3.4. Attribute recognition

We often want to know only the object’s attributes, such as texture and shape, instead
of the object itself. In such a case, by regarding ‘attribute’ space as the model space,
the system can operate in just the same way as in the previous sections.

In this situation, the system has a sort of semantic network and assigns attribute spaces
to the nodes of the network. The system can update the probability distributions using
Bayes’ rule so long as the network does not have recurrent structure.

4. HAPTIC SENSING SYSTEM WITH ACTIVE PERCEPTION

When perceiving objects by touch, we human beings do not simply detect the defor-
mation of the skin, but utilize information from various receptors. Moreover, we take
various observation behaviors according to what property we want to know.

In light of these characteristics of the human haptic perception, the author has con-
structed some sensing systems which perceive objects utilizing various sensors and
actuators. Here, the authors shows two systems: one treats mainly object material and
the other treats mainly surface feeling.

4.1. System 1

4.1.1. Structure. The first system is to discriminate object materials by utilizing four
sensor devices [8, 11].

Figure 6 shows the schematic structure of the system and available sensor devices. It
is a robotic arm equipped with a thermo-sensor, a pressure sensor, a vibration sensor,
and a piezoelectric sensor. Since the sensors are not built into one unit, the author col-
lects experimental data with each sensor separately and afterward performs recognition
experiments on a computer.

The thermo-sensor is constructed by burying three thermistors into artificial skin made
of silicon rubber, whose temperature is kept constant by a heat controller. It senses the
transient change of its temperature when it touches the object.

The pressure sensor is to measure the object’s deformation when imposing a certain
strength of pressure on the object. Operating this sensor corresponds to the situation
in which human beings ‘push’ an object with the hands to know its elasticity. The
piezoelectric sensor measures the frequency shift when it touches the object: it has
an oscillator circuit whose oscillation frequency is determined by the resonance of the
piezoelectric device and changes according to the object materials.

The vibration sensor is made by covering a small microphone with silicon rubber.
This sensor measures the vibration of the rubber while the system rubs the object with
this sensor and gets information about surface roughness.

4.1.2. Experimental results. The signals obtained by the sensors are pre-processed
and are quantized in a proper manner. After calculating the conditional probabilities,
the system discriminates object materials with the intentional observation algorithm. In
the experiments, the author dealt with six kinds of materials shown in Table 1. For each
material, three different sizes of samples were prepared.
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Table 1.

Objects used for experiments on system 1
Object materials Object sizes
Aluminium 5.0 cmx5.0 cm
Wood 3.0 cmx3.0 cm
Cork 1.0 cmx1.0 cm
Acrylic resin

Polystyrene

Rubber

Six kinds of materials were dealt with in the
experiments. For each material, three sizes
of sample objects were prepared.

Two examples of sensor selection sequences are shown in Fig. 7.

Figure 7(a) is a result for the case where the sample objects are identical in size. In
this case, the thermo-sensor seems to be most useful at the initial state. As a result of
observing the object with the thermo-sensor, the candidates were restricted to ‘rubber’
and ‘polystyrene’. Then using the pressure sensor, the system judged that the object
was ‘rubber’.

Figure 7(b) is a result for the case where the objects are of various sizes. In this case,
the thermo-sensor is not useful because the amount of thermal diffusion is different
according to object sizes even if object materials are the same. Instead, the vibration
sensor seems to be the most useful. Using the vibration sensor and the thermo-sensor
iteratively, the system recognized that the object was ‘wood’.

Figure 8 shows recognition accuracy and observation times for the cases of intentional
observation and of random observation where the system selects the sensors at random
(however, one sensor is selected no more than once). This results shows that recognition
accuracy is improved and observation times are reduced by the intentional observation.

When the system takes the random observation strategy, the accuracy is not high in
spite of using almost all the sensors. This is because past experience has an influence

Recognition Accuracy Observation Times
100 4
[%] Intentional [times]
o Rando 2r
60 0
Identical  Various Identical  Various
Size Sizes Size Sizes

Figure 8. Recognition performance of system 1. The figure describes recognition accuracy and observation
times for the cases of intentional observation and of random observation. It shows that recognition accuracy
is improved and observation times are reduced by the intentional observation algorithm.
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on future judgement in an iterative estimation process: if the system happens to use
a sensor which gets unreliable information and updates the internal state based on the
information, the system may form a wrong judgement. Anyway, this result is interesting
because it illustrates that wrong preconception leads to bad results.

4.2. System 2

4.2.1. Structure. The second system deals with the texture and friction feeling of an
object surface [12].

Figure 9 shows the structure of the system. The system consists of two parts: one is
a ‘sensor head’, which rubs and observes an object surface, and the other is a ‘stage’
which moves up and down with an object on it. When the system observes an ob-
ject, the stage is lifted up until the object surface comes in touch with the tip of
the sensor head. Then, the sensor head moves horizontally and rubs the object sur-
face.

The structure of the sensor head is illustrated in Fig. 10. The tip is equipped with
a small microphone covered by silicon rubber. It is almost the same as the vibration-
sensor used in system 1: the microphone catches the vibration of silicon rubber while
the sensor head moves along the object. The speed of the movement is controlled
by a computer. In addition, the head is connected to the mount by parallel links
and leaf springs: it rotates around the mount but suffers a force from the springs
which brings it back to the center position. Measuring the rotation angle, the sys-
tem knows the total amount of friction between the sensor tip and the object sur-
face.

On the other hand, the stage is equipped with a load cell to measure the force from the
sensor tip upon the object surface. Utilizing this cell, the system adjusts the touching
force to the object. Changing the two parameters of the moving speed and the touching
force, the system ‘touches’ the object surface in various manners.

Potentio-meter

Slide

Liftup |)

Spring - g : ‘\ :

o o Sa{nPIe \Stage
Object
Motor
i

o o [ / |
Stepping Motor Load Cell

Figure 9. Structure of system 2. The system consists of a ‘sensor head’ and a ‘stage’. When the system
observes an object, the stage is lifted up until the object surface touches the tip of the sensor head. Then,
the sensor head moves horizontally and observes the object surface.
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Figure 10. Structure of sensor head. The sensor head is equipped with an small microphone covered by
silicon rubber, which measures vibration of the rubber while it moves along the object surface. Also, the
head is connected to the mount by parallel links and leaf springs. Using this mechanism, the system knows
the total amount of friction between the sensor tip and the object surface.

In the experiments, the author chose three forces and three speeds, and measured
the rotation angle and the signal from the microphone for every pair of a pressure and

a speed. These signals were processed and transformed to some object characteris-
tics.

4.2.2. Experimental results. The author prepared eight basic objects which gave us
apparently distinctive haptic feeling (see Table 2), and chose six characteristics which
showed large difference for the objects. Every object was represented as a set of the
six characteristics in the system.

The selected characteristics are shown in Table 3. Maximum amplitude of the micro-
phone output contains information on surface ruggedness. The number of zero crossings

Table 2.
Objects used for experiments on system 2
Basic objects Test objects
(1) Rubber 1 (9) Rubber 3
(2) Rubber 2 (10) Rubber 4
(3) Suede (11) Wood 2
(4) Chrome leather (12) Sand paper 2
(5) Ceramic tile (13) Paper 1
(6) Wood 1 (14) Paper 2
(7) Cork (15) Cloth 1
(8) Sand paper 1 (16) Felt

(17) Velour

Eight objects were prepared as basic objects which
gave us distinctive haptic feeling. Besides, nine
test objects were provided for examining the re-
lation between the system’s feeling and human
feeling.
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Table 3.
Characteristics selected for object representation

Characteristics

a Maximum amplitude of microphone output
(rubbing speed 48 mm/s, touching force 0.29 N)
b number of zero crossing of microphone output
(rubbing speed 48 mm/s, touching force 0.29 N)
c power distribution ratio of microphone output
(rubbing speed 48 mm/s, touching force 0.29 N)
d maximum rotation angle of sensor head
(rubbing speed 48 mm/s, touching force 0.29 N)
e maximum rotation angle of sensor head
(rubbing speed 27 mm/s, touching force 0.39 N)
f maximum rotation angle of sensor head

(rubbing speed 48 mnys, touching force 0.15 N)

The author chose six characteristics which showed large dif-
ference, for the basic objects in Table 2.

of the microphone output can be a rough estimate of the vibration frequency of the sil-
icon rubber. The power distribution ratio means the power ratio of high frequency
component to all the components, which is calculated from a power spectrum of the
microphone output. These two characteristics represent surface roughness. Finally, the
rotation angle of the sensor head reflects the total friction between the sensor tip and
the object surface.

First, the author shows how the basic objects are represented in the system. Figure 11

a a
f b f b
e c e c
d d
(1) Rubber 1 (3) Suede
a a
f b f b
e c e c
d d
(7) Cork (8) Sand Paper 1

Figure 11. Representation of haptic feeling of basic objects. The system’s representations of four basic
objects are indicated with radar charts. The details are explained in the text.
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describes the results for four basic objects with radar charts whose axes correspond
to the six characteristics. As shown in the figure, each basic object has a specific
representation. The result suggests the following conclusions:

(1) Objects which feel rough such as ‘suede’ (3) and “sand paper’ (8) mark large values
on axis a.

(2) Though both ‘suede’ (3) and ‘cork’ (7) feel rough, the former feels sticky and the
latter does not. This difference appears on axis e.

(3) ‘Plain rubber’ (1) feels smooth when we rub it with a slight pressure, but feels
sticky when we rub it with a certain amount of pressure. This feature appears in
axes a, d, and e.

Therefore, the system catches some features of haptic perception.

The author applied the intentional observation algorithm also to the second system.
As a result, the algorithm proved to be effective in the system. The details of the results
are omitted.

4.2.3. Comparison between system’s feeling and human feeling. Another experiment
was performed to investigate the relation between representation in the system and in
human perception. The author prepared nine test objects in addition to the eight basic
objects (Table 2) and, for each of them, asked the system and three human subjects
which basic object felt the most similar to the given object. The system’s answer was
determined based on the normalized distance in the six-dimensional characteristic space.

The results are shown in Fig. 12. The figure describes the percentages that the
subjects’ answers agreed to what the system judged the most similar, the second most
similar, and the third most similar. The upper and lower bars show the results when
the subjects were taught nothing particular and after they were taught the system’s
judgement, respectively. It should be noted that the answers of the subjects did not
always agree with one another.

The experimental results are well illustrated in the following typical example. When
‘felt’ (16) was given as an object, the system judged that ‘wood 1’ (6) was the clos-
est. On the other hand, all subjects answered that ‘chrome leather’ (4) was the most

M\ost 2nd JMost 3rd Most  Others
Without 2, .
Teach / 5//// 22

Le s

N R
0 50 100
[%]

Figure 12. Comparison between system’s feeling and human feeling. The figure indicates how much the
system’s judgement agreed with the subjects’ answers: it shows the percentages that their answers agreed to
what the system judged the most similar, the second most similar, and the third most similar. The upper and
lower bars show the results when the subjects were taught nothing and after they were taught the system’s
judgement, respectively.
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similar. When the experimenter taught them the system’s judgement, they changed
their judgements to the same as the system’s one, and said “If I concentrate my at-
tention upon surface texture, (6) is the closest. But it did not feel similar because
it is different in the thermal feelings”. This shows that the subjects perceived the
objects based not only on the surface texture but also on thermal sensation: their an-
swers agreed well to the system’s answers when they judged based only on surface
texture.

As mentioned in Section 1, human haptics is based on various sensory information:
several kinds of mechanical receptors and thermo-receptors are buried in the skin and
supply information about skin vibration, skin deformation, and thermal diffusion when
we touch an object [17, 18]. Moreover, muscle receptors detect the force between the
body and the object. Such characteristics of human haptic processes have been pointed
out in the field of psychophysics [1, 2, 19].

The above results suggests that the system realizes well the human perception of
surface roughness and friction, and that thermal information is no less significant in
human haptic perception than tactual information. The author would like to improve the
system by adding other appropriate sensors and to make a more faithful representation
of human haptic feeling.

5. DISCUSSION

In this section, the author would like to discuss some problems related to sensory
integration systems.

5.1. Learning probability distribution

The system needs to know conditional probabilities p;(g; | £) in order to use the proposed
algorithm. The author has discussed only the recognition procedure on the assumption
that they had already been obtained. However, if the system does not know them
in advance or if they change in time, the system must estimate them together with
recognizing objects. In this case, the system sacrifices observation efficiency and inserts
‘testing’ observation to identify the distributions.

It would be useful if the system could accomplish these two contradicting goals
of efficient observation and efficient learning at the same time. Unfortunately, this
problem is one of the difficult problems known as ‘dual control’ or ‘TAB (two-armed
bandit) problem’ [13, 14]. It is realistic to treat them as separate problems, that is, to
pursue only observation efficiency on the assumption that the learning has already been
finished.

To construct internal representation is a more significant problem. It is regarded
as a process of selecting an appropriate model to represent the external world struc-
ture. Considering that ‘model selection’ is one of the main interests in the field of
statistics, fruitful discussion is expected by treating this problem from a viewpoint of
statistics.

5.2. Attention to unexpected signals

The author has treated the sensor selection from a viewpoint of ‘top-down’, that is,
based on the system’s intention to discriminate objects. Here, the author considers the
case where the sensor catches ‘attention’ of the system in a ‘bottom-up’ manner.
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Assume that each local sensor always receives si gnals from the object and the recog-
nition center fetches its information when the system selects it. As mentioned in Section
3.1, the system can calculate the probability P(g;) (= 2e m(€)pi(gi | €)) which predicts
what signal tends to be detected by the i-th sensor. Now, suppose that the i-th sensor
detects a signal whose predicted probability is extremely small (that is, P(g;) ~ 0). This
situation suggests that the probability distribution of the model space may be wrong.
In other words, when the ‘detected signal’ differs far from the ‘expected signal’, the
system needs to pay ‘attention’ to the signal and to examine it by observing the object
again with the same sensor or with other sensors whose signals are correlated to the
signal concerned. Getting the same signal by the second observation, the recognition
center should change its internal state. If the signals obtained by two observations are
contradictory to each other, it is plausible that the sensor is out of order.

To realize this, every local sensor calculates the distribution, compares it to the de-
tected signals and makes an alert when the corresponding probability is less than a cer-
tain threshold. Since the calculation and comparison can be performed independently
at each sensor, the task of the recognition center will not increase. By developing this
idea, a system can be made which proceeds its task without observation so long as the
local sensors do not make any alert.

5.3. Learning quantization at local sensors

When treating signals as discrete values, the system needs to quantize sensory signals
into a certain number of discrete values. We usually use such quantization algorithms
as preserve as much information in the signal as possible, or as maximize the entropy
of the quantized signal space [15]. It is sure that this strategy is good in the sense that
the system represents the input signal faithfully. In recognition systems, however, it is
also helpful that the quantization mechanism should reflect the recognition task.

Such a ‘task-dependent’ learning quantization is realized by a simple mechanism. For
instance, using the hill-climbing method, the system can change quantization mechanism
so as to increase the mutual information between the model space and the quantized sig-
nal space. Another skilled algorithm using Bhattacharyya distance (one of the distances
between two probability density functions) is proposed by Longo et al. [16].

If the signal space is divided into too many regions, a vast amount of memory and
testing observation will be required. One method to avoid this is to set the initial
quantization rough and to make it precise gradually according to demand. As a result,
the signals contributing much to recognition are precisely quantized and, conversely,
those contributing little are roughly quantized.

6. CONCLUSION

The author formalized the sensory integration and active perception process from a
viewpoint of information theory and constructed an al gorithm for intentional observa-
tion as an iterative experimental design. The al gorithm was applied to actual sensing
systems which recognized object materials and surface textures in a similar manner to
human haptic perception processes, and realized hi gher recognition accuracy by fewer
observations than the random observation al gorithm.



282 Y. Sakaguchi

The active perception process is found not only in haptic perception but also in visual
perception and in auditory perception. Its validity appears rather remarkably in these
processes because the system inevitably deals with a large amount of information in
visual and auditory processing. Moreover, it plays an essential role in the processes
of the ‘cocktail party effect’ and ‘selective attention’ in human brains. The author
would like to develop the theory and to clarify the mechanism of these interesting
functions.
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