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Abstract— A fundamental problem in the field of motor
neuroscience is to understand how our brain generates ap-
propriate motor commands for precise movements effortlessly.
The problem seems difficult since there are infinitely many
possible trajectories and our musculo-skeltal system is generally
redundant. We focus on the motor command representation and
show that a simple strategy can solve the problem for a planar
two-joints arm model. We also discuss the emergence of the
muscle synergies, which may enable us to make natural motor
behaviors with smaller degrees of freedom.

I. INTRODUCTION

In daily life, humans can effortlessly control an arm to

reach a target. Although there are infinitely many candi-

dates of paths and velocity profiles which achieve the task,

typical hand paths are gently curved and velocity profiles

are bell-shaped. Also, our muscle system to drive the arm

is redundant. One of the fundamental problems of motor

neuroscience is to understand how our brain generates a set

of appropriate motor commands to achieve the task.

In 1980’s, it was shown that criteria based on physical

quantities, such as the minimum jerk [1] and the minimum

changes in joint torques [2], explain hand paths and velocity

profiles well. In 1998, Harris and Wolpert reported that

the assumption of signal dependent noise describes many

characteristics of the motor control [3]. Recently, Haruno

and Wolpert showed that the signal dependent noise gives a

clue to solve the muscle redundancy [4].

In this paper, we solve the problem from a different view-

point. In order to move an arm to a target, there are infinitely

many possible trajectories. Moreover every trajectory can

be realized with multiple motor commands because of the

redundant muscle system. Therefore, choosing a single motor

command, which we call “motor planning,” is the planning

not only of a trajectory, but also of a particular activation

pattern of muscles. In order to solve the problem, we do

not consider any physical quantities, such as jerk or torque

change, nor noise, but assume the functional form of motor

commands with some parameters. Each motor command is

uniquely represented with the parameters. We call it “motor

command representation,” and define a cost function which

describes a preference of the representation. We propose

a strategy to choose a single motor command based on

the preference (Sec.II). The new proposal is examined with
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reaching tasks (Sec.IV) of a two-joints arm (Sec.III). We

show the resulting motor commands possess typical charac-

teristics of the human reaching movements through simulated

experiments (Sec.V).

We further discuss the emergence of synergies. The muscle

synergies are defined as the coherent activations of a group

of muscles [7]. We show that the motor commands obtained

through our strategy form groups of motor commands which

are similar to muscle synergies (Sec.V-C). Finally the paper

is concluded with a short discussion (Sec.VI).

II. OPTIMIZING MOTOR COMMAND

REPRESENTATION

Every motor command is a time series sent from brain to

muscles. Here, we pose a question, “how can brain create

and send time series?” The answer to this question has not

been made clear in the motor neuroscience.

In this paper, we assume the functional representation of

the motor command as a linear combination of a prefixed

basis, more precisely as follows

ui(t) =
∑

j

wijφj(t), wij ≥ 0,

where ui is the motor command to muscle i and {φj} is the

basis. Since W=(wij) defines the motor command, we call

it a “motor command representation.” The basis is defined

as a set of synchronizing patterns with different durations,

which is similar to what is discussed in [8].

Now, our problem is to select a single motor command

representation W . We solve this problem by assuming spar-

sity. Olshausen and Field assumed sparsity on the visual

representation and discussed the optimal basis, which possess

the characteristics of the simple cells observed in the primary

visual cortex [9]. Here, we assume the basis and compute

the optimal representation based on sparsity. We define the

following cost function

Preference(W ; λ1, λ2) = λ1

∑

ij

wij + λ2

∑

ij

w2
ij ,

where λ1, λ2 > 0.

We obtain our “preferred representation” by minimizing this

cost function. The weight of the first term λ1 is important

for the sparsity, while the weight of the second term controls

the smoothness of the representation. A similar idea was

proposed in [10]. We choose appropriate values of these

parameters through some trials.
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Fig. 1. Two joints arm model with six muscles. The upper arm is “Link 1” (length l1 is 0.275 m and the moment of inertia I1 is 0.029 kgm2). The
forearm is “Link 2” (l2 = 0.345 m, I2 = 0.042 kgm2, and the weight m2 is 1.077 kg). The upper arm is connect to the shoulder and the forearm via
two joints. The torques of two joints are produced by 6 muscles. Each muscle is connected to each joint as in the figure where (a1, · · · , a8) = (3.5 cm,
4.1 cm, 2.7 cm, 2.0 cm, 2.9 cm, 4.3 cm, 2.5 cm, 2.3 cm). The parameters are the same as those in [13].

We give a simple example. Suppose u is the input of the

following linear forward dynamics of x,

ẋ = a x + b u(t) = a x + b
∑

j

wjφj(t),

Assuming Φj(t) is the response of the system when u =
φj(t), then from the linearity of the system,

x(t) =
∑

j

wjΦj(t).

When the achievement of a task is evaluated with a function

Error(x(t)) of x(t), such as the endpoint error, our proposal

is to select the {wj} which minimizes

Cost = Error(x(t)) + Preference(W ; λ1, λ2)

= Error(W : {Φj(t)}) + Preference(W ; λ1, λ2).

If Error(x(t)) is a linear or quadratic function of x(t), Cost
becomes a quadratic function of {wj}, and optimal W is

solved with a quadratic programming (QP) method.

In the following, we use a two-joints arm, which is a

nonlinear system, to show how the proposed strategy works.

III. MODEL

A. Two-joints Arm

In this paper, we consider a 2-joints (shoulder and elbow)

6-muscle arm (Fig.1) [11], [12], [13]. The inverse dynamics

of the arm in the horizontal plane is

M(θ)θ̈ + C(θ, θ̇) + Bθ = τ (t). (1)

The forward dynamics becomes

θ̈ = −M(θ)−1
(

C(θ, θ̇) + Bθ − τ (t)
)

,

where θ(t) = (θ1(t), θ2(t))
T ∈ ℜ2 is the angle vector (θ1:

shoulder, θ2: elbow), and τ (t) = (τ1(t), τ2(t))
T ∈ ℜ2 is the

torque vector, (τ1: shoulder, τ2: elbow). The parameters are

given as

M(θ) =

(

α1 + 2α2 cos θ2 α3 + α2 cos θ2

α3 + α2 cos θ2 α3

)

C(θ, θ̇)=

(

−θ̇2(2θ̇1 + θ̇)
α3 + α2 cos θ2

)

α2 sin θ2, B =

(

β11 β12

β21 β22

)

α1 =I1 + I2 + m2l
2
1, α2 = m2l1s2, α3 = I2,

where, Ii is the moment of inertia of each link, m2 is

the weight of link 2, li is the length of link i, s2 is the

distance from the joint center to the center of the mass of

link 2 (0.162 cm), and β11 = 1.445, β12 = β21 = 0.301,

β22 = 1.383. The parameters are the same as those in [13].

The forward dynamics is computed with the modified Euler

method, where the updating interval is 5 msec.

B. Torque and Moment Arm

A set of motor commands, u(t) = (u1(t), · · · , u6(t))
T ,

(ui(t) ≥ 0) activates 6 muscles and their tensions are

combined to give the two dimensional torque τ (t). Figure 2

schematically shows the model of the process. We assumed

u(t) is processed through 2 low-pass filters (1st-order low-

pass filters with T1 = 30 msec and T2 = 40 msec. These

values were chosen according to [3]). We assume the tension

of each muscle is proportional to the output of low-pass

filters, which we define u
′(t). Since each muscle has a

different strength depending on the cross-sectional area, unit-

less u
′(t) is correctly scaled to give the tension T (t) as

T (t) = Du
′(t),

Fig. 2. The process from motor command to torque.
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where D is a diagonal matrix with diag(d1, · · · , d6) =
(840 N, 800 N, 560 N, 480 N, 200 N, 240 N). The diagonal

elements correspond to the maximum tension of the muscles,

computed by the cross-sectional area of each muscle [14] and

the maximum tension per unit area (we set it to 62 N/cm
2
).

Finally T (t) is multiplied by the moment arm (Fig.1) to give

the torque as

τ (t) = A T (t) = A D u
′(t),

where

A =

(

a1 −a2 0 0 a5 −a6

0 0 a3 −a4 a7 −a8

)

.

We assumed a constant moment arm, that is, A was fixed.

C. Motor Command

As described in section II, we assume that the motor

command is represented as a linear combination of a basis,

which is a set of pre-fixed time series. In this paper, we

defined a basis with 3 kinds of single-shot positive square

wave (with length of 0.05, 0.1, and 0.2 sec) shown in

Fig.3(a). Let us denote them as φi(t), i = 1, 2, and 3. We

assume the basis is created with a synchronous timing Ts sec
generated by the brain. In our experiment, Ts is set to 0.3 sec.

Thus, a motor command ui(t) is written as

ui(t) =
K

∑

k=0

3
∑

j=1

wijkφj(t − kTs), wijk ≥ 0. (2)

The output of the low-pass filters u′

i(t) is written with a

linear mixture of {φ′

i(t)} which are the low-passed version

of {φi(t)}. Figure 3(b) shows the function,

u′

i(t) =
K

∑

k=0

3
∑

j=1

wijkφ′

j(t − kTs).

Note that ui(t), u
′

i(t) ≥ 0 from the definition.

0 0.1 0.2 0.3 0.4

0

0.5

1

time[sec]
0 0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

time[sec]

(a) (b)

Fig. 3. Basis of the motor command: (a) a set of function for motor
command φi(t), (b) the outputs of each function through low-pass filters
φ′

i
(t).

Finally, the motor command u(t) becomes a function of

{wijk}. Let us denote {wijk} with w, and motor command

is u(t; w). We also note that θ(t) is a function of w, that

is, θ(t; w). The motor planning is to compute the w which

achieves the given task of θ(t; w).

IV. OPTIMAL MOTOR COMMAND FOR

REACHING TASK

A. Reaching Task and Cost Function

The task of reaching is to move the hand from an initial

position θI to a target position θT . We evaluate the achieve-

ment of the task with the endpoint error.

Error(w) =
1

Tf

∫ Te+Tf

Te

|θ(t; w) − θT |
2dt,

where Te is the desired movement time and Tf is the post-

movement stationary time. Since we are working with a

discrete time, Error is redefined as

Error(w) =
1

Tf(L + 1)

L
∑

l=0

|θ(tl; w) − θT |
2,

where tl = Te + l
Tf

L
.

(3)

The motor command is represented by w, and the command

which achieves the reaching task can be computed by min-

imizing Error(w). However, it does not give a unique w

since the muscles are redundant.

As is discussed in the section II, we further assume a

preference on the parameters w, which is defined as

Preference(w; λ1, λ2) = λ1

∑

ijk

wijk + λ2

∑

ijk

w2
ijk .

Note that the second term shows the power of w while the

first term adds the sparsity to w.

Therefore, the cost function we have defined in Sec.II is

written as follows,

Cost(w; λ1, λ2) = Error(w) + Preference(w; λ1, λ2)

=
1

Tf (L + 1)

L
∑

l=0

|θ(tl; w) − θT |
2

+ λ1

∑

ijk

wijk + λ2

∑

ijk

w2
ijk

The optimal w, which minimizes the cost function, gives the

motor command for the given reaching task.

ŵ = argmin
w

[

Cost(w; λ1, λ2)
]

. (4)

B. Minimizing Cost Function

Since θ(t; w) is a nonlinear function of w, it is difficult

to solve eq.(4) analytically. We locally approximate θ(t; w)
with

θ(t; w(ijk) + ∆) ≃ θ(t; w) + ∆
dθ(t; w)

dwijk

,

where w(ijk)+∆ denotes that ∆ is added to wijk . We define

∆ijk as the solution of the following optimization problem.

min
[ 1

Tf (L+1)

L
∑

l=0

∣

∣

∣

∑

ijk

∆ijk

dθ(tl; w)

dwijk

+θ(tl; w)−θT

∣

∣

∣

2

+λ1

∑

ijk

(wijk + ∆ijk) + λ2

∑

ijk

(wijk + ∆ijk)2
]

,

subject to ∆ijk ≥ −wijk .

This problem is easily solved with a QP method. The

derivative dθ(t; w)/dwijk is approximated by adding a small
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positive perturbation δ to wijk and computing the resulting

differential equation of θ, that is

dθ(t; w)

dwijk

≃
1

δ
(θ(t; w(ijk) + δ) − θ(t; w)).

After optimizing ∆ijk , every wijk is renewed as wijk+∆ijk,

and the process is iterated until convergence. If the model is a

linear control system, the state of the system becomes linear

w.r.t. {wijk} and no iteration is needed. From the experiment,

we see it converges surprisingly well after 3 or 4 iterations. It

implies the control system in eq. (1) is not strongly nonlinear.

V. EXPERIMENT

A. Task Set

Fig. 4. Candidates of the initial and terminal points.

We computed the optimal motor commands for a set of

initial-target position pairs (Fig.4 shows the points which are

used as initial and target positions). We first set a fan shape

region, the range of θ is 0 ≤ θ1 ≤ 2π/3, θ2 = 0 and distance

from the origin is between 0.2la to 0.8la, where la = l1 + l2.

We chose grids every 10 cm on the horizontal plane, and if

the grid falls into the fan shape region, it is a candidate of

the initial and terminal points.

Every pair of points is chosen if the distance between them

is more than or equal to 20 cm. There are 380 pairs which

satisfies the condition, and we used all of them. This is the

task set.

The values L, Te, and Tf in eq.(3) are set to 8, 0.4 sec,

and 0.4 sec, respectively, and λ1 and λ2 in eq.(4) are set to

2 × 10−6 and 1 × 10−5, respectively1.

B. Results

Out of 380 reaching tasks, 4 results are summarized in

Fig.5. The results in Fig.5(a) show slightly curved trajecto-

ries, which are the typical characteristics of reaching tasks.

The velocity profiles in Fig.5(b) clearly form bell-shapes,

which are also typically observed in real experiments.

Figure 5(c) shows the low-passed motor commands of 6

muscles. Many of the motor commands become 0, that is, the

1A lot of combinations of (λ1, λ2) are tested. The values are chosen to
make the resulting movement smooth and the motor command representa-
tion sparse.

motor commands are sparse, and the redundancy of muscles

are clearly removed.

C. Synergies

Furthermore, we observe some groups of muscles tend to

be activated simultaneously. This observation motivates us

to give further analysis. The idea of muscle synergies has

been discussed in [7]. The muscle synergies are the “coherent

activations, in space or time, of a group of muscles,” which

is considered to be “building blocks that could simplify the

construction of motor behaviors,” (from [7]). In [7], the

NMF-type (Nonnegative Matrix Factorization) analysis is

applied to the measured EMG. In our case, we apply NMF-

type approach to the coefficients of the motor commands,

and see if we observe some interesting results.

The motor command u(t) is represented by eq. (2). We

first define the normalized coefficient vector ωk as follows,

ωk =
1

|(w11k, w12k, · · · , w63k)|
(w11k, w12k, · · · , w63k)T .

ωk is a vector of each time step and its dimension is (# of

basis functions × # of muscles) = 3 × 6 = 18. Non-zero

ωk are collected from the results of 380 reaching tasks, and

renumbered to form a matrix W as

W = (ω1, · · · , ωN ).

In our case, N = 1140(= 3 × 380), which shows each

of 380 tasks has 3 non-zero ωk, and W is a matrix with a

size of 18 × 1140, where every component is positive and

the squared length of each column is 1.

We define synergy vectors s1, · · · , sM , M < 18, where

sm is an 18 dimensional vector with positive components.

Let us define a synergy matrix S = (s1, · · · , sM ), and

assume

W ≃ SH, where H = (hmn) ∈ ℜM×N
+ .

We would like to compute S and H when W is given. This

is the NMF problem [15]. We solved the following problem

min
[

‖W − SH‖2
F + λ

∑

i,m

sim

]

,

subject to sim ≥ 0, hmn ≥ 0,

where ‖ · ‖F is the Frobenius norm and the second term

makes S sparse (λ is set to 1 × 10−5). The problem is

easily solved with a QP method. We applied a QP method

to compute H and S iteratively. Although the algorithm has

the initial condition dependence, it monotonically converges

to a local minimum. We varied M from 4 to 8, and

computed the synergies with different initial values. It is easy

to imagine that as the number of the synergies increases,

‖W − SH‖2
F becomes smaller, but the synergies become

isolated commands on each muscle. Figure 6 shows the low-

passed outputs of synergies, when M is set to 5.

With this set of synergies Ŝ, W is reconstructed as

ω̂n = Ŝĥn,

where Ĥ = (ĥ1, · · · , ĥN ). The average squared error
∑N

n=1 |ωn − ω̂n|
2/N is 5.1%.
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Fig. 5. Results: 4 reaching tasks out of 380 are shown. Each task is as follows (denoted with x-y coordinate (x cm, y cm)) : Task 1; from (0, 20) to
(−10, 40), Task 2; from (0, 40) to (0, 20), Task 3; from (30, 0) to (30, 30), and Task 4; from (−10, 30) to (20, 30), (a) shows the trajectories, where
red and blue dots are initial and terminal points, respectively, (b) the velocity profile of each task, (c) the low-passed motor commands of 6 muscles.
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Fig. 6. Synergies.
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D. Arbitrary Initial and Target Positions

It is difficult to imagine that brain is optimizing the motor

command representation for every motor planning. A more

plausible idea is that brain stores learned motor commands

and somehow creates a mapping function from task to

motor command based on the learned motor commands. We

consider such an extension of our proposal.

In our model, the motor command is represented with

a finite number of positive coefficients, and the mapping

function should have a form

w = f(θI , θT ).

We have already computed the motor commands for grids

(Fig. 4). Let a or b denote the index of each grid, where the

initial and target points are indexed as θa
I and θb

T respectively.

When a new pair of an initial and a target point (θI , θT )
is given, we consider a simple approximation of f(θI , θT )
based on a set of learned motor commands {wab} where the

set computed for the grids in section V-B,

w
ab = f(θa

I , θb
T ).

We first represent each point as the linear combination of

the grids as

θI =
∑

a

αaθ
a
I , αa ≥ 0,

∑

a

αa = 1

θT =
∑

b

βbθ
b
T , βb ≥ 0,

∑

b

βb = 1

We choose {αa} {βb} to be the optimal coefficients of the

following optimization problems,

max
[

∑

a

αa

]

,

such that θI =
∑

a

αaθ
a
I , αa ≥ 0,

∑

a

αa = 1,

and

max
[

∑

b

βb

]

,

such that θT =
∑

b

βbθ
b
T , βb ≥ 0,

∑

b

βb = 1.

These problems are solved efficiently with a linear program-

ming (LP). The solution is so sparse that only 3 coefficients

of {αa} and {βb} are non-zero. Once these coefficients are

obtained, the motor command for w is computed as follows

w = f(θI , θT ) =
∑

ab

αaβbf(θa
I , θb

T ) =
∑

ab

αaβbw
ab.

Although this is an approximation of the function f(θI , θT ),
some preliminary numerical results show it works fine.

VI. DISCUSSION AND CONCLUSION

It has been shown that a simple assumption on the

preference of the motor command representation solves the

motor planning for a reaching task. The resulting motor

commands are represented with a set of coefficients of the

basis. The coefficients are sparse, and a synergy-like structure
is observed. This idea might be useful for robotics to create

human-like movements.

We note that we did not assume any noise [3] nor feedback

[12]. It is clear that there are noises and a feedback control is

necessary for precise control. Our approach can be extended

naturally to implement them, and it is one of our future

works. Also, biologically plausible basis functions should be

considered. Although the arm was restricted to the horizontal

plane, we believe extension to three dimensional space with

gravity is not difficult.
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